Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2011, Volume 51, Number 3, Pages 384–406 (Mi zvmmf8070)  

This article is cited in 9 scientific papers (total in 9 papers)

Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schrödinger equation in a semi-infinite strip

I. A. Zlotnik

Department of Mathematical Modeling, Moscow Power Engineering Institute (Technical University), Krasnokazarmennaya ul. 14, Moscow, 111250 Russia

Abstract: An initial–boundary value problem for the generalized Schrödinger equation in a semi-infinite strip is solved. A new family of two-level finite-difference schemes with averaging over spatial variables on a finite mesh is constructed, which covers a set of finite-difference schemes built using various methods. For the family, an abstract approximate transparent boundary condition (TBC) is formulated and the solutions are proved to be absolutely stable in two norms with respect to both initial data and free terms. A discrete TBC is derived, and the stability of the family of schemes with this TBC is proved. The implementation of schemes with the discrete TBC is discussed, and numerical results are presented.

Key words: nonstationary two-dimensional Schrödinger equation in unbounded domain, two-evel finite-difference schemes, approximate and discrete transparent boundary conditions, stability, finite-difference schemes, Matlab.

Full text: PDF file (613 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2011, 51:3, 355–376

Bibliographic databases:

UDC: 519.633
Received: 26.04.2010

Citation: I. A. Zlotnik, “Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schrödinger equation in a semi-infinite strip”, Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011), 384–406; Comput. Math. Math. Phys., 51:3 (2011), 355–376

Citation in format AMSBIB
\Bibitem{Zlo11}
\by I.~A.~Zlotnik
\paper Family of finite-difference schemes with approximate transparent boundary conditions for the generalized nonstationary Schr\"odinger equation in a~semi-infinite strip
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 3
\pages 384--406
\mathnet{http://mi.mathnet.ru/zvmmf8070}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2839572}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 3
\pages 355--376
\crossref{https://doi.org/10.1134/S0965542511030122}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000289167800002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953719420}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf8070
  • http://mi.mathnet.ru/eng/zvmmf/v51/i3/p384

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Degtyarëv A.A., Kozlova E.S., “Issledovanie pogreshnosti raznostnogo resheniya odnonapravlennogo uravneniya Gelmgoltsa metodom vychislitelnogo eksperimenta”, Kompyuternaya optika, 36:1 (2012), 36–45  mathscinet  elib
    2. Zlotnik A.A., Zlotnik I.A., “Finite element method with discrete transparent boundary conditions for the one-dimensional nonstationary Schrödinger equation”, Dokl. Math., 86:3 (2012), 750–755  crossref  mathscinet  zmath  isi  elib  elib  scopus
    3. Zlotnik A., Zlotnik I., “Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation”, Kinet. Relat. Models, 5:3 (2012), 639–667  crossref  mathscinet  zmath  isi  elib  scopus
    4. Morandi O., “Mathematical Analysis of a Nonparabolic Two-Band Schrodinger-Poisson Problem”, Transport. Theor. Statist. Phys., 42:4-5 (2013), 133–161  crossref  mathscinet  zmath  isi  elib
    5. Morandi O., “Existence of Solution of a Non-Linear Multiband KP Model With Transparent Boundary Conditions”, J. Phys. A-Math. Theor., 47:48 (2014), 485301  crossref  mathscinet  zmath  isi  scopus
    6. Ducomet B., Zlotnik A., Zlotnik I., “The Splitting in Potential Crank-Nicolson Scheme With Discrete Transparent Boundary Conditions For the Schrodinger Equation on a Semi-Infinite Strip”, ESAIM-Math. Model. Numer. Anal.-Model. Math. Anal. Numer., 48:6 (2014), 1681–1699  crossref  mathscinet  zmath  isi  scopus
    7. Zlotnik A., Romanova A., “on a Numerov-Crank-Nicolson-Strang Scheme With Discrete Transparent Boundary Conditions For the Schrodinger Equation on a Semi-Infinite Strip”, Appl. Numer. Math., 93:SI (2015), 279–294  crossref  mathscinet  zmath  isi  elib  scopus
    8. Ducomet B., Zlotnik A., Romanova A., “on a Splitting Higher-Order Scheme With Discrete Transparent Boundary Conditions For the Schrodinger Equation in a Semi-Infinite Parallelepiped”, Appl. Math. Comput., 255 (2015), 196–206  crossref  mathscinet  zmath  isi  elib  scopus
    9. Zlotnik A., “Error Estimates of the Crank-Nicolson-Polylinear Fem With the Discrete Tbc For the Generalized Schrodinger Equation in An Unbounded Parallelepiped”, Finite Difference Methods, Theory and Applications, Lecture Notes in Computer Science, 9045, eds. Dimov I., Farago I., Vulkov L., Springer-Verlag Berlin, 2015, 129–141  crossref  mathscinet  zmath  isi  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:395
    Full text:100
    References:56
    First page:21

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021