Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2011, Volume 51, Number 3, Pages 529–544 (Mi zvmmf8089)  

This article is cited in 3 scientific papers (total in 3 papers)

Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II

A. G. D'yakonov

Faculty of Computational Mathematics and Cybernetics, Moscow State University, Moscow, 119991 Russia

Abstract: Characteristic matrices and metrics of equivalence systems are studied that help give an efficient description of conjunctions of equivalence systems. Using these results, families of correct polynomials in the algebraic approach to classification are described.

Key words: pattern recognition, classification, estimation algorithms, algebraic approach, algebraic closure, algebra over algorithms, correctness, equivalence, metric.

Full text: PDF file (917 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2011, 51:3, 490–504

Bibliographic databases:

UDC: 519.714
Received: 02.09.2010

Citation: A. G. D'yakonov, “Theory of equivalence systems for describing algebraic closures of a generalized estimation model. II”, Zh. Vychisl. Mat. Mat. Fiz., 51:3 (2011), 529–544; Comput. Math. Math. Phys., 51:3 (2011), 490–504

Citation in format AMSBIB
\Bibitem{Dya11}
\by A.~G.~D'yakonov
\paper Theory of equivalence systems for describing algebraic closures of a~generalized estimation model.~II
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2011
\vol 51
\issue 3
\pages 529--544
\mathnet{http://mi.mathnet.ru/zvmmf8089}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=2839581}
\transl
\jour Comput. Math. Math. Phys.
\yr 2011
\vol 51
\issue 3
\pages 490--504
\crossref{https://doi.org/10.1134/S0965542511030067}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000289167800011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79953684045}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf8089
  • http://mi.mathnet.ru/eng/zvmmf/v51/i3/p529

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
    Cycle of papers

    This publication is cited in the following articles:
    1. A. G. Dyakonov, “Criteria for the singularity of a pairwise $l_1$-distance matrix and their generalizations”, Izv. Math., 76:3 (2012), 517–534  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    2. Dyakonov A.G., “Reshenie zadach analiza dannykh, osnovannoe na lineinoi kombinatsii deformatsii”, Mashinnoe obuchenie i analiz dannykh, 1:5 (2013), 568–579  elib
    3. O. A. Ignat'ev, “Construction of a correct combination of estimation algorithms adjusted using the cross validation technique”, Comput. Math. Math. Phys., 55:12 (2015), 2094–2099  mathnet  crossref  crossref  mathscinet  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:280
    Full text:87
    References:44
    First page:26

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021