RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 1977, Volume 17, Number 5, Pages 1267–1277 (Mi zvmmf8281)  

A parametric family of statistical recognition algorithms

Bak Hyng Khang

Hanoi – Moscow

Full text: PDF file (1213 kB)

English version:
USSR Computational Mathematics and Mathematical Physics, 1977, 17:5, 163–173

Bibliographic databases:

UDC: 519.95
MSC: Primary 68T10; Secondary 68W99, 90C99
Received: 27.04.1976

Citation: Bak Hyng Khang, “A parametric family of statistical recognition algorithms”, Zh. Vychisl. Mat. Mat. Fiz., 17:5 (1977), 1267–1277; U.S.S.R. Comput. Math. Math. Phys., 17:5 (1977), 163–173

Citation in format AMSBIB
\Bibitem{Bac77}
\by Bak Hyng Khang
\paper A parametric family of statistical recognition algorithms
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 1977
\vol 17
\issue 5
\pages 1267--1277
\mathnet{http://mi.mathnet.ru/zvmmf8281}
\zmath{https://zbmath.org/?q=an:0404.68088}
\transl
\jour U.S.S.R. Comput. Math. Math. Phys.
\yr 1977
\vol 17
\issue 5
\pages 163--173
\crossref{https://doi.org/10.1016/0041-5553(77)90018-0}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf8281
  • http://mi.mathnet.ru/eng/zvmmf/v17/i5/p1267

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:74
    Full text:51
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020