RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2012, Volume 52, Number 10, Pages 1926–1935 (Mi zvmmf9772)  

This article is cited in 2 scientific papers (total in 2 papers)

On the complexity of the dualization problem

E. V. Dyukova, R. M. Sotnezov

Dorodnicyn Computing Center, Russian Academy of Sciences, Moscow, Russia

Abstract: The computational complexity of discrete problems concerning the enumeration of solutions is addressed. The concept of an asymptotically efficient algorithm is introduced for the dualization problem, which is formulated as the problem of constructing irreducible coverings of a Boolean matrix. This concept imposes weaker constraints on the number of УredundantФ algorithmic steps as compared with the previously introduced concept of an asymptotically optimal algorithm. When the number of rows in a Boolean matrix is no less than the number of columns (in which case asymptotically optimal algorithms for the problem fail to be constructed), algorithms based on the polynomialtime-delay enumeration of УcompatibleФ sets of columns of the matrix is shown to be asymptotically efficient. A similar result is obtained for the problem of searching for maximal conjunctions of a monotone Boolean function defined by a conjunctive normal form.

Key words: complexity of enumeration problems, dualization problem, maximal conjunction, irreducible covering of a Boolean matrix, polynomial-time-delay algorithm, asymptotically optimal algorithm of searching for irreducible coverings, metric properties of a set of coverings, metric properties of disjunctive normal forms.

Full text: PDF file (231 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2012, 52:10, 1472–1481

Bibliographic databases:

UDC: 519.7
Received: 14.03.2012

Citation: E. V. Dyukova, R. M. Sotnezov, “On the complexity of the dualization problem”, Zh. Vychisl. Mat. Mat. Fiz., 52:10 (2012), 1926–1935; Comput. Math. Math. Phys., 52:10 (2012), 1472–1481

Citation in format AMSBIB
\Bibitem{DyuSot12}
\by E.~V.~Dyukova, R.~M.~Sotnezov
\paper On the complexity of the dualization problem
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2012
\vol 52
\issue 10
\pages 1926--1935
\mathnet{http://mi.mathnet.ru/zvmmf9772}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3150300}
\zmath{https://zbmath.org/?q=an:1274.68137}
\transl
\jour Comput. Math. Math. Phys.
\yr 2012
\vol 52
\issue 10
\pages 1472--1481
\crossref{https://doi.org/10.1134/S0965542512100090}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9772
  • http://mi.mathnet.ru/eng/zvmmf/v52/i10/p1926

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. E. V. Dyukova, P. A. Prokofev, “Ob asimptoticheski optimalnom perechislenii neprivodimykh pokrytii bulevoi matritsy”, PDM, 2014, no. 1(23), 96–105  mathnet
    2. E. V. Djukova, P. A. Prokofjev, “Asymptotically optimal dualization algorithms”, Comput. Math. Math. Phys., 55:5 (2015), 891–905  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
  • ∆урнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:231
    Full text:54
    References:32
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020