RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 2, Pages 181–194 (Mi zvmmf9775)  

This article is cited in 7 scientific papers (total in 7 papers)

Iterative method for constructing coverings of the multidimensional unit sphere

G. K. Kameneva, A. V. Lotova, T. S. Mayskayab

a Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
b M. V. Lomonosov Moscow State University, Faculty of Computational Mathematics and Cybernetics

Abstract: The stepwise-supplement-of-a-covering (SSC) method is described and examined. The method is intended for the numerical construction of near optimal coverings of the multidimensional unit sphere by neighborhoods of a finite number of points (covering basis). Coverings of the unit sphere are used, for example, in nonadaptive polyhedral approximation of multidimensional convex compact bodies based on the evaluation of their support function for directions defined by points of the covering basis. The SSC method is used to iteratively construct a sequence of coverings, each differing from the previous one by a single new point included in the covering basis. Although such coverings are not optimal, it is theoretically shown that they are asymptotically suboptimal. By applying an experimental analysis, the asymptotic efficiency of the SSC method is estimated and the method is shown to be relatively efficient for a small number of points in the covering basis.

Key words: methods for covering the multidimensional unit sphere, interactive method, stepwise-supplement-of-a-covering method, asymptotically suboptimal covering.

DOI: https://doi.org/10.7868/S0044466913020117

Full text: PDF file (311 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:2, 131–143

Bibliographic databases:

UDC: 519.6
Received: 18.08.2012

Citation: G. K. Kamenev, A. V. Lotov, T. S. Mayskaya, “Iterative method for constructing coverings of the multidimensional unit sphere”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013), 181–194; Comput. Math. Math. Phys., 53:2 (2013), 131–143

Citation in format AMSBIB
\Bibitem{KamLotMai13}
\by G.~K.~Kamenev, A.~V.~Lotov, T.~S.~Mayskaya
\paper Iterative method for constructing coverings of the multidimensional unit sphere
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 2
\pages 181--194
\mathnet{http://mi.mathnet.ru/zvmmf9775}
\crossref{https://doi.org/10.7868/S0044466913020117}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3249020}
\zmath{https://zbmath.org/?q=an:06188965}
\elib{http://elibrary.ru/item.asp?id=18737263}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 2
\pages 131--143
\crossref{https://doi.org/10.1134/S0965542513020085}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000315491100001}
\elib{http://elibrary.ru/item.asp?id=20431735}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84874522242}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9775
  • http://mi.mathnet.ru/eng/zvmmf/v53/i2/p181

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. G. K. Kamenev, “Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality”, Comput. Math. Math. Phys., 54:8 (2014), 1201–1213  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib
    2. V. E. Berezkin, A. V. Lotov, “Comparison of two Pareto frontier approximations”, Comput. Math. Math. Phys., 54:9 (2014), 1402–1410  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    3. G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 55:10 (2015), 1619–1632  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    4. G. K. Kamenev, “Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 56:5 (2016), 744–755  mathnet  crossref  crossref  isi  elib
    5. A. V. Lotov, “Method for constructing an external polyhedral estimate of the trajectory tube for a nonlinear dynamic system”, Dokl. Math., 95:1 (2017), 95–98  crossref  mathscinet  zmath  isi  scopus
    6. G. K. Kamenev, A. V. Lotov, “Approximation of the effective hull of a nonconvex multidimensional set given by a nonlinear mapping”, Dokl. Math., 97:1 (2018), 104–108  mathnet  crossref  crossref  zmath  isi  scopus
    7. A. V. Lotov, “New external estimate for the reachable set of a nonlinear multistep dynamic system”, Comput. Math. Math. Phys., 58:2 (2018), 196–206  mathnet  crossref  crossref  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:296
    Full text:62
    References:61
    First page:46

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020