Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 1, Page 73 (Mi zvmmf9795)  

This article is cited in 1 scientific paper (total in 1 paper)

An inverse finance problem for estimation of the volatility

A. Neisy, K. Salmani

Department of Mathematics, Computer and Statistics, Faculty of Economics, Allameh Tabataba'i University, Iran

Abstract: Black-Scholes model, as a base model for pricing in derivatives markets has some deficiencies, such as ignoring market jumps, and considering market volatility as a constant factor. In this article, we introduce a pricing model for European-Options under jump-diffusion underlying asset. Then, using some appropriate numerical methods we try to solve this model with integral term, and terms including derivative. Finally, considering volatility as an unknown parameter, we try to estimate it by using our proposed model. For the purpose of estimating volatility, in this article, we utilize inverse problem, in which inverse problem model is first defined, and then volatility is estimated using minimization function with Tikhonov regularization.

Key words: calibration, jump-diffusion model, inverse problem, numerical methods, boundary value problem, Tikhonov regularization, $\theta$ method.

DOI: https://doi.org/10.7868/S0044466913010109

Full text: PDF file (96 kB)

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:1, 63–77

Bibliographic databases:

UDC: 519.627.2
Received: 09.11.2011
Language:

Citation: A. Neisy, K. Salmani, “An inverse finance problem for estimation of the volatility”, Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013), 73; Comput. Math. Math. Phys., 53:1 (2013), 63–77

Citation in format AMSBIB
\Bibitem{NeiSal13}
\by A.~Neisy, K.~Salmani
\paper An inverse finance problem for estimation of the volatility
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 1
\pages 73
\mathnet{http://mi.mathnet.ru/zvmmf9795}
\crossref{https://doi.org/10.7868/S0044466913010109}
\zmath{https://zbmath.org/?q=an:06183604}
\elib{https://elibrary.ru/item.asp?id=18446740}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 1
\pages 63--77
\crossref{https://doi.org/10.1134/S0965542513010090}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000314309400006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84893009400}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9795
  • http://mi.mathnet.ru/eng/zvmmf/v53/i1/p73

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Xu Z., Jia X., “The Calibration of Volatility For Option Pricing Models With Jump Diffusion Processes”, Appl. Anal., 98:4 (2019), 810–827  crossref  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:200
    Full text:97
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021