RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 7, Pages 1051–1057 (Mi zvmmf9818)  

This article is cited in 2 scientific papers (total in 2 papers)

Some issues concerning approximations of functions by Fourier–Bessel sums

V. A. Abilova, F. V. Abilovab, M. K. Kerimovc

a Daghestan State University
b Daghestan State Technical University
c Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow

Abstract: Some issues concerning the approximation of one-variable functions from the class $\mathbb{L}_2$ by $n$th-order partial sums of Fourier–Bessel series are studied. Several theorems are proved that estimate the best approximation of a function characterized by the generalized modulus of continuity.

Key words: partial sums of Fourier–Bessel series, approximation of functions from $\mathbb{L}_2$ by Fourier–Bessel series, averaging operator, generalized modulus of continuity, estimate of approximation.

DOI: https://doi.org/10.7868/S0044466913070028

Full text: PDF file (197 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:7, 867–873

Bibliographic databases:

UDC: 519.651
Received: 11.03.2013

Citation: V. A. Abilov, F. V. Abilova, M. K. Kerimov, “Some issues concerning approximations of functions by Fourier–Bessel sums”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1051–1057; Comput. Math. Math. Phys., 53:7 (2013), 867–873

Citation in format AMSBIB
\Bibitem{AbiAbiKer13}
\by V.~A.~Abilov, F.~V.~Abilova, M.~K.~Kerimov
\paper Some issues concerning approximations of functions by Fourier--Bessel sums
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 7
\pages 1051--1057
\mathnet{http://mi.mathnet.ru/zvmmf9818}
\crossref{https://doi.org/10.7868/S0044466913070028}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3255234}
\elib{http://elibrary.ru/item.asp?id=19124091}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 7
\pages 867--873
\crossref{https://doi.org/10.1134/S0965542513070026}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000322134300001}
\elib{http://elibrary.ru/item.asp?id=20446680}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880735630}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9818
  • http://mi.mathnet.ru/eng/zvmmf/v53/i7/p1051

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Daher R., El Ouadih S., “Some New Estimtes of Approximation of Functions By Fourier-Jacobi Sums”, Facta Univ-Ser. Math. Informat., 31:1 (2016), 1–10  zmath  isi
    2. El Ouadih S., Daher R., “Some Issues Concerning Approximations of Functions By Fourier-Jacobi Sums”, J. Math. Ext., 10:3 (2016), 1–10  mathscinet  zmath  isi
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:291
    Full text:108
    References:59
    First page:33

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020