RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 7, Page 1107 (Mi zvmmf9823)  

This article is cited in 4 scientific papers (total in 4 papers)

Efficient computational algorithms for solving one class of fractional boundary value problems

Safar Irandoust-pakchin, Hossein Kheiri, Somayeh Abdi-mazraeh

Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran

Abstract: In this paper, we introduce a modification of HeТs variational iteration, homotopy analysis and optimal homotopy analysis methods for solving fractional boundary value problems. It is illustrated that the proposed methods are powerful fast numerical tools to find accurate solutions. It is illustrated that efficiency of these methods is based on proper choosing of initial guess.

Key words: fractional boundary value problems, homotopy analysis method, HeТs variational iteration method, optimal homotopy analysis method.

DOI: https://doi.org/10.7868/S0044466913070120

Full text: PDF file (95 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:7, 920–932

Bibliographic databases:

UDC: 519.63
Received: 27.02.2012
Language:

Citation: Safar Irandoust-pakchin, Hossein Kheiri, Somayeh Abdi-mazraeh, “Efficient computational algorithms for solving one class of fractional boundary value problems”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013), 1107; Comput. Math. Math. Phys., 53:7 (2013), 920–932

Citation in format AMSBIB
\Bibitem{IraKheAbd13}
\by Safar~Irandoust-pakchin, Hossein~Kheiri, Somayeh~Abdi-mazraeh
\paper Efficient computational algorithms for solving one class of fractional boundary value problems
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 7
\pages 1107
\mathnet{http://mi.mathnet.ru/zvmmf9823}
\crossref{https://doi.org/10.7868/S0044466913070120}
\elib{http://elibrary.ru/item.asp?id=19124096}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 7
\pages 920--932
\crossref{https://doi.org/10.1134/S0965542513070117}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000322134300006}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84880744956}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9823
  • http://mi.mathnet.ru/eng/zvmmf/v53/i7/p1107

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Kheiri H., Irandoust-Pakchin S., Javidi M., “Analytical Solutions For the Fractional Nonlinear Telegraph Equation Using a Modified Homotopy Perturbation and Separation of Variables Methods”, Iran. J. Sci. Technol. Trans. A-Sci., 38:A4 (2014), 423–433  mathscinet  isi
    2. Irandoust-Pakchin S., Lakestani M., Kheiri H., “Numerical Approach For Solving a Class of Nonlinear Fractional Differential Equations”, Bull. Iran Math. Soc., 42:5 (2016), 1107–1126  mathscinet  zmath  isi
    3. Naghshband S., Araghi Mohammad Ali Fariborzi, “Solving Generalized Quintic Complex Ginzburg-Landau Equation By Homotopy Analysis Method”, Ain Shams Eng. J., 9:4 (2018), 607–613  crossref  isi
    4. El-Sayed A.A., Agarwal P., “Numerical Solution of Multiterm Variable-Order Fractional Differential Equations Via Shifted Legendre Polynomials”, Math. Meth. Appl. Sci., 42:11 (2019), 3978–3991  crossref  isi
  • ∆урнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:418
    Full text:58
    References:25
    First page:1

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020