RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 6, Pages 878–897 (Mi zvmmf9838)  

This article is cited in 2 scientific papers (total in 2 papers)

Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum

S. A. Nazarov

St. Petersburg State University, Department of Mathematics and Mechanics

Abstract: It is assumed that a trapped mode (i.e., a function decaying at infinity that leaves small discrepancies of order $\varepsilon\ll1$ in the Helmholtz equation and the Neumann boundary condition) at some frequency $\kappa^0$ is found approximately in an acoustic waveguide $\Omega^0$. Under certain constraints, it is shows that there exists a regularly perturbed waveguide $\Omega^\varepsilon$ with the eigenfrequency $\kappa^\varepsilon=\kappa^0+O(\varepsilon)$. The corresponding eigenvalue $\lambda^\varepsilon$ of the operator belongs to the continuous spectrum and, being naturally unstable, requires Уfine tuningФ of the parameters of the small perturbation of the waveguide wall. The analysis is based on the concepts of the augmented scattering matrix and the enforced stability of eigenvalues in the continuous spectrum.

Key words: acoustic waveguide, approximate computation of an eigenvalue in the continuous spectrum, enforced stability, augmented scattering matrix.

DOI: https://doi.org/10.7868/S0044466913060136

Full text: PDF file (344 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:6, 702–720

Bibliographic databases:

UDC: 519.624
Received: 23.01.2013

Citation: S. A. Nazarov, “Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum”, Zh. Vychisl. Mat. Mat. Fiz., 53:6 (2013), 878–897; Comput. Math. Math. Phys., 53:6 (2013), 702–720

Citation in format AMSBIB
\Bibitem{Naz13}
\by S.~A.~Nazarov
\paper Scheme for interpretation of approximately computed eigenvalues embedded in a continuous spectrum
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 6
\pages 878--897
\mathnet{http://mi.mathnet.ru/zvmmf9838}
\crossref{https://doi.org/10.7868/S0044466913060136}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3252907}
\elib{http://elibrary.ru/item.asp?id=19086233}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 6
\pages 702--720
\crossref{https://doi.org/10.1134/S0965542513060122}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000321070700005}
\elib{http://elibrary.ru/item.asp?id=20438692}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879731425}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9838
  • http://mi.mathnet.ru/eng/zvmmf/v53/i6/p878

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Bikmetov A.R., Gadyl'shin R.R., “On Local Perturbations of Waveguides”, Russ. J. Math. Phys., 23:1 (2016), 1–18  crossref  mathscinet  zmath  isi  scopus
    2. Nazarov S.A., Ruotsalainen K.M., “A Rigorous Interpretation of Approximate Computations of Embedded Eigenfrequencies of Water Waves”, Z. Anal. ihre. Anwend., 35:2 (2016), 211–242  crossref  mathscinet  zmath  isi  elib  scopus
  • ∆урнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:206
    Full text:34
    References:38
    First page:11

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019