Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
General information
Latest issue
Impact factor

Search papers
Search references

Latest issue
Current issues
Archive issues
What is RSS

Zh. Vychisl. Mat. Mat. Fiz.:

Personal entry:
Save password
Forgotten password?

Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 3, Pages 417–432 (Mi zvmmf9888)  

This article is cited in 7 scientific papers (total in 7 papers)

Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations

M. V. Lipavskii, A. I. Tolstykh, E. N. Chigerev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow

Abstract: For equations with convective terms, a difference scheme is described based on ninth-order multioperator approximations. Its optimization aimed at achieving a high resolution of small scales of solutions is discussed. The scheme is applied to test problems, and shear layer instability is numerically simulated with a detailed analysis of developing vortex structures and their characteristics.

Key words: Navier–Stokes equation, direct numerical simulation, shear layers, ninth-order multioperator approximation.

DOI: https://doi.org/10.7868/S0044466913030101

Full text: PDF file (1176 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:3, 296–310

Bibliographic databases:

UDC: 519.634
MSC: 35Q30,65M06
Received: 06.06.2012
Revised: 06.09.2012

Citation: M. V. Lipavskii, A. I. Tolstykh, E. N. Chigerev, “Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations”, Zh. Vychisl. Mat. Mat. Fiz., 53:3 (2013), 417–432; Comput. Math. Math. Phys., 53:3 (2013), 296–310

Citation in format AMSBIB
\by M.~V.~Lipavskii, A.~I.~Tolstykh, E.~N.~Chigerev
\paper Numerical simulation of shear layer instability using a scheme with ninth-order multioperator approximations
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 3
\pages 417--432
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 3
\pages 296--310

Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9888
  • http://mi.mathnet.ru/eng/zvmmf/v53/i3/p417

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru

    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. A. D. Savel'ev, “Multioperator representation of composite compact schemes”, Comput. Math. Math. Phys., 54:10 (2014), 1522–1535  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    2. A. D. Savelev, “O raznostnykh skhemakh 18-go i 22-go poryadkov dlya uravnenii s konvektivnymi i diffuznymi chlenami”, Matem. modelirovanie, 29:6 (2017), 35–47  mathnet  elib
    3. Yu. M. Kulikov, E. E. Son, “Primenenie skhemy «KABARE» k zadache ob evolyutsii svobodnogo sdvigovogo techeniya”, Kompyuternye issledovaniya i modelirovanie, 9:6 (2017), 881–903  mathnet  crossref
    4. A. Kraemer, K. Kuellmer, D. Reith, W. Joppich, H. Foysi, “Semi-Lagrangian off-lattice Boltzmann method for weakly compressible flows”, Phys. Rev. E, 95:2 (2017), 023305  crossref  mathscinet  isi  scopus
    5. A. I. Tolstykh, M. V. Lipavskii, “Instability and acoustic fields of the Rankine vortex as seen from long-term calculations with the tenth-order multioperators-based scheme”, Math. Comput. Simul., 147:SI (2018), 301–320  crossref  mathscinet  isi  scopus
    6. Yu. M. Kulikov, E. E. Son, “Kelvin-Helmholz instability in thermoviscous free shear flow”, XXXII International Conference on Interaction of Intense Energy Fluxes With Matter (ELBRUS 2017), Journal of Physics Conference Series, 946, IOP Publishing Ltd, 2018, 012075  crossref  isi  scopus
    7. A. I. Tolstykh, E. N. Chigerev, “Application of compact and multioperator approximations in the immersed boundary method”, Comput. Math. Math. Phys., 58:8 (2018), 1354–1376  mathnet  crossref  crossref  isi  elib
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:174
    Full text:74
    First page:4

    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021