RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 9, Pages 1517–1530 (Mi zvmmf9918)  

Method of equivalent differences for the neutron transport equation

B. D. Abramov

Institute of Physics and Power Engineering, pl. Bondarenko 1, Obninsk, Kaluga oblast, 249033, Russia

Abstract: For boundary value problems in neutron transport theory, numerical methods are described that are based on the reduction of these problems to systems of nonlinear algebraic equations. Techniques based on the theory of nonlinear positive operators in partially ordered spaces are used to establish major results concerning the existence and uniqueness of solutions and solution-finding methods.

Key words: methods for solving boundary value problems for neutron transport equation, solution methods for nonlinear operator equations, methods of equivalent differences.

DOI: https://doi.org/10.7868/S0044466913090032

Full text: PDF file (935 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:9, 1336–1349

Bibliographic databases:

Document Type: Article
UDC: 519.634
Received: 19.07.2011

Citation: B. D. Abramov, “Method of equivalent differences for the neutron transport equation”, Zh. Vychisl. Mat. Mat. Fiz., 53:9 (2013), 1517–1530; Comput. Math. Math. Phys., 53:9 (2013), 1336–1349

Citation in format AMSBIB
\Bibitem{Abr13}
\by B.~D.~Abramov
\paper Method of equivalent differences for the neutron transport equation
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 9
\pages 1517--1530
\mathnet{http://mi.mathnet.ru/zvmmf9918}
\crossref{https://doi.org/10.7868/S0044466913090032}
\elib{http://elibrary.ru/item.asp?id=20193350}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 9
\pages 1336--1349
\crossref{https://doi.org/10.1134/S0965542513090030}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000325962000008}
\elib{http://elibrary.ru/item.asp?id=20455561}
\scopus{http://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884172700}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9918
  • http://mi.mathnet.ru/eng/zvmmf/v53/i9/p1517

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:129
    Full text:37
    References:34
    First page:18

     
    Contact us:
     Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019