Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 10, Pages 1679–1683 (Mi zvmmf9931)  

This article is cited in 2 scientific papers (total in 2 papers)

Solvability analysis of a nonlocal boundary value problem by applying the contraction mapping principle

E. A. Volkov

Steklov Mathematical Institute, Russian Academy of Sciences, ul. Gubkina 8, Moscow, 119991, Russia

Abstract: The existence and uniqueness of a classical solution to the nonlocal boundary value problem for Poisson's operator on a two-dimensional rectangular domain is proved in detail by applying the contraction mapping principle.

Key words: rectangular domain, nonlocal boundary value problem for Poisson's operator, contraction mapping principle, solvability of boundary value problems.

Funding Agency Grant Number
Russian Foundation for Basic Research 11-01-00744
Ministry of Education and Science of the Russian Federation НШ-65772.2010.1
Russian Academy of Sciences - Federal Agency for Scientific Organizations


DOI: https://doi.org/10.7868/S0044466913100141

Full text: PDF file (160 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:10, 1494–1498

Bibliographic databases:

UDC: 519.63
Received: 06.05.2013

Citation: E. A. Volkov, “Solvability analysis of a nonlocal boundary value problem by applying the contraction mapping principle”, Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1679–1683; Comput. Math. Math. Phys., 53:10 (2013), 1494–1498

Citation in format AMSBIB
\Bibitem{Vol13}
\by E.~A.~Volkov
\paper Solvability analysis of a nonlocal boundary value problem by applying the~contraction mapping principle
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 10
\pages 1679--1683
\mathnet{http://mi.mathnet.ru/zvmmf9931}
\crossref{https://doi.org/10.7868/S0044466913100141}
\mathscinet{http://www.ams.org/mathscinet-getitem?mr=3254890}
\elib{https://elibrary.ru/item.asp?id=20280324}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 10
\pages 1494--1498
\crossref{https://doi.org/10.1134/S0965542513100138}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000325962300008}
\elib{https://elibrary.ru/item.asp?id=21883420}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886044520}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9931
  • http://mi.mathnet.ru/eng/zvmmf/v53/i10/p1679

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles

    This publication is cited in the following articles:
    1. Volkov E.A. Dosiyev A.A., “On the Numerical Solution of a Multilevel Nonlocal Problem”, Mediterr. J. Math., 13:5 (2016), 3589–3604  crossref  mathscinet  zmath  isi  scopus
    2. Dosiyev A.A., “Difference Method of Fourth Order Accuracy For the Laplace Equation With Multilevel Nonlocal Conditions”, J. Comput. Appl. Math., 354 (2019), 587–596  crossref  mathscinet  isi  scopus
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:255
    Full text:63
    References:53
    First page:43

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021