Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zh. Vychisl. Mat. Mat. Fiz.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zh. Vychisl. Mat. Mat. Fiz., 2013, Volume 53, Number 10, Page 1760 (Mi zvmmf9938)  

Non-isothermal flow through a rotating straight duct with wide range of rotational parameter and pressure driven parameter

Mohammad Wahiduzzamana, Md. Mahmud Alamb, M. Ferdowsb, S. Sivasankaranc

a Mathematics Discipline, Khulna University, Khulna-9208, Bangladesh
b Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh
c Department of Mathematics, University of Malaysia, Malaysia

Abstract: Numerical study is performed to investigate the Non-isothermal flow in a rotating straight duct under various flow conditions. Spectral method is applied as a main tool for the numerical technique, where the Chebyshev polynomial, the Collocation methods, the Arc-length method and the Newton–Raphson method are also used as secondary tools. The characteristics of the flow mentioned above are described here. The incompressible viscous steady Non-isothermal flow through a straight duct of rectangular cross-section rotating at a constant angular velocity about the center of the duct cross-section is investigated numerically to examine the combined effects of Rotation parameter (Coriolis force), Grashof number (parameter which is used in heat, transfer studies involving free, forced or natural convection and is equql to $\frac{L^3g\beta\Delta T}{v^2}$, where $L$ is the characteristic length, $\rho$ the density, $g$ the acceleration due to gravity, $\beta$ the thermal expansion coefficient, $\Delta T$ the temperature difference, $\mu$ the viscosity and $v$ the kinematic viscosity of the fluid. The expansion coefficient $\beta$ is a measure of the rate at which the volume $V$ of the fluid changes with temperature at a given pressure $P$, Prandtl number, aspect ratio and Pressure-driven parameter (centrifugal force) on the flow. We examine the structures in case of rotation of the duct axis and the Pressure-driven parameter with large aspect ratio where other parameters are fixed. The calculations are carried out for $0\leqslant T_r\leqslant 300$, $2\leqslant\gamma\leqslant6$, $G_r=100$, $P_r=7.0$ and $0\leqslant P_r\leqslant 800$ by applying the Spectral method. When $\Omega>0$ and the rotation is in the same direction as the Coriolis force enforces the centrifugal force, multiple solutions of Non-symmetric the secondary flow patterns with 10-vortex (maximum) are obtained in case of $T_r=100$ and 150 with large aspect ratio. The intense of the temperature field is very strong near the heated wall in all cases. Finally, the overall solutions of the problems considered in conclusion.

Key words: non-isothermal flow, through straight duct, Pressure-driven parameter, Rotation parameter, spectral method, Chebyshev polynomials, collocation method, Newton–Raphson method.

DOI: https://doi.org/10.7868/S0044466913100153

Full text: PDF file (95 kB)
References: PDF file   HTML file

English version:
Computational Mathematics and Mathematical Physics, 2013, 53:10, 1571–1589

Bibliographic databases:

UDC: 519.634
Received: 10.07.2012
Revised: 21.12.2013
Language:

Citation: Mohammad Wahiduzzaman, Md. Mahmud Alam, M. Ferdows, S. Sivasankaran, “Non-isothermal flow through a rotating straight duct with wide range of rotational parameter and pressure driven parameter”, Zh. Vychisl. Mat. Mat. Fiz., 53:10 (2013), 1760; Comput. Math. Math. Phys., 53:10 (2013), 1571–1589

Citation in format AMSBIB
\Bibitem{WahAlaFer13}
\by Mohammad~Wahiduzzaman, Md.~Mahmud~Alam, M.~Ferdows, S.~Sivasankaran
\paper Non-isothermal flow through a rotating straight duct with wide range of rotational parameter and pressure driven parameter
\jour Zh. Vychisl. Mat. Mat. Fiz.
\yr 2013
\vol 53
\issue 10
\pages 1760
\mathnet{http://mi.mathnet.ru/zvmmf9938}
\crossref{https://doi.org/10.7868/S0044466913100153}
\elib{https://elibrary.ru/item.asp?id=20280331}
\transl
\jour Comput. Math. Math. Phys.
\yr 2013
\vol 53
\issue 10
\pages 1571--1589
\crossref{https://doi.org/10.1134/S096554251310014X}
\isi{http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=PARTNER_APP&SrcAuth=LinksAMR&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000325962300015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84886044478}


Linking options:
  • http://mi.mathnet.ru/eng/zvmmf9938
  • http://mi.mathnet.ru/eng/zvmmf/v53/i10/p1760

    SHARE: VKontakte.ru FaceBook Twitter Mail.ru Livejournal Memori.ru


    Citing articles on Google Scholar: Russian citations, English citations
    Related articles on Google Scholar: Russian articles, English articles
  • Журнал вычислительной математики и математической физики Computational Mathematics and Mathematical Physics
    Number of views:
    This page:454
    Full text:65
    References:23
    First page:1

     
    Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021