Formal equivariant \hat{A} class, splines and multiplicities of the index of transversally elliptic operators

Let G be a connected compact Lie group acting on a manifold M and let D be a transversally elliptic operator on M. The multiplicity of the index of D is a function on the set \hat{G} of irreducible representations of G. Let T be a maximal torus of G with Lie algebra t. We construct a finite number of piecewise polynomial functions on t^*, and give a formula for the multiplicity in terms of these functions. The main new concept is the formal equivariant \hat{A} class.

§ 1. Introduction

Let G be a compact Lie group acting on a manifold M of dimension d. As described in the monograph [1], Atiyah–Singer have associated to any G-transversally elliptic symbol σ on M a virtual trace class representation of G.

Let $\text{Index}_G(\sigma)(g)$ be its trace:

$$\text{Index}_G(\sigma)(g) = \sum_{\lambda \in \hat{G}} \text{mult}_G(\sigma)(\lambda)\chi_{\lambda}(g).$$

Thus $\text{Index}_G(\sigma)(g)$ is a G-invariant (generalized) function on G, and the right hand side of the above formula is its Fourier expansion in terms of the traces χ_{λ} of the unitary irreducible representations V_{λ} of G. If D is a transversally elliptic operator with principal symbol σ, we write indifferently $\text{Index}_G(D)$ or $\text{Index}_G(\sigma)$, $\text{mult}_G(D)$ or $\text{mult}_G(\sigma)$. The computation of $\text{mult}_G(\sigma)(\lambda)$ is important. For example, if D is a transversally elliptic operator with principal symbol σ, the multiplicity of the trivial representation in $\text{Index}_G(\sigma)$ is the (virtual) dimension of the space of G-invariant (virtual) solutions of D.

In this article, we will restrict ourselves to the case when G is connected.

Let g be the Lie algebra of G, and g^* its dual vector space. Our aim is to construct a canonical G-invariant function $m_G(\sigma)$ on g^* which extends the multiplicity function $\text{mult}_G(\sigma)$ on $\hat{G} \subset g^*/G$.

The first instance of such a relation between the multiplicity function on \hat{G} and functions on g^* is the formula for the Kostant partition function in terms of derivatives of spline functions (that is, piecewise polynomial functions) [9], [8]. Similarly, Heckman’s result [17] on branching rules relates asymptotically multiplicities to spline functions. For example, if T is the maximal torus of G, the asymptotic