Feynman amplitudes and limits of heights

We investigate from a mathematical perspective how Feynman amplitudes appear in the low-energy limit of string amplitudes. In this paper, we prove the convergence of the integrands. We derive this from results describing the asymptotic behaviour of the height pairing between degree-zero divisors, as a family of curves degenerates. These are obtained by means of the nilpotent orbit theorem in Hodge theory.

Bibliography: 35 titles.

Keywords: Feynman amplitudes, low-energy limit, asymptotics of the archimedean height pairing, Symanzik polynomials, nilpotent orbit theorem, biextension mixed Hodge structures, regularized Green functions.

DOI: 10.4213/im8492

À Jean-Pierre Serre, en témoignage d’admiration

§ 1. Introduction

This paper grew out of an attempt to understand from a mathematical perspective the idea we learned from physicists that Feynman amplitudes should arise in the low-energy limit $\alpha' \to 0$ of string theory amplitudes, cf. [33] and the references therein. Throughout we work in space-time \mathbb{R}^D with a given Minkowski bilinear form $\langle \cdot, \cdot \rangle$.

String amplitudes are integrals over the moduli space $\mathcal{M}_{g,n}$ of genus $g \geq 1$ curves with n marked points. They are associated to a fixed collection of external momenta $\mathbf{p} = (p_1, \ldots, p_n)$, which are vectors in \mathbb{R}^D satisfying the conservation law $\sum_{i=1}^n p_i = 0$. Up to some factors carrying information about the physical process being studied, the string amplitude can be written as (see e.g. [35, p. 182])

$$A_{\alpha'}(g, \mathbf{p}) = \int_{\mathcal{M}_{g,n}} \exp(-i \alpha' \mathcal{F}) d\nu_{g,n}. \quad (1.1)$$

In this expression, $d\nu_{g,n}$ is a volume form on $\mathcal{M}_{g,n}$, independent of the momenta, α' is a positive real number, which one thinks of as the square of the string length, and $\mathcal{F}: \mathcal{M}_{g,n} \to \mathbb{R}$ is the continuous function defined at the point $[C, \sigma_1, \ldots, \sigma_n]$ of $\mathcal{M}_{g,n}$ by

$$\mathcal{F}([C, \sigma_1, \ldots, \sigma_n]) = \sum_{1 \leq i, j \leq n} \langle p_i, p_j \rangle g'_{\mathfrak{A}, C}(\sigma_i, \sigma_j),$$

J.I. Burgos Gil was partially supported by the MINECO research projects MTM2013–42135–P and ICMAT Severo Ochoa project SEV–2015–0554, and the DFG project SFB 1085 “Higher Invariants”. J. Fresán acknowledges support from the SNFS grants 200021–150099 and 200020–162928.