|
2-years impact-factor Math-Net.Ru of «Vestnik KRAUNC. Fiziko-Matematicheskie Nauki» journal, 2017
2-years impact-factor Math-Net.Ru of the journal in 2017 is calculated
as the number of citations in 2017 to the scientific papers published during
2015–2016.
The table below contains the list of citations in 2017 to the papers
published in 2015–2016. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2017 |
0.125 |
96 |
12 |
9 |
83.3% |
|
N |
Citing pulication |
|
Cited paper |
|
1. |
T. S. Kumykov, “Matematicheskoe modelirovanie formirovaniya raznosti potentsialov pri kristallizatsii oblachnykh kapel s uchetom fraktalnosti sredy”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:3 (2017), 16–24  |
→ |
Mathematical modeling of changes in the charge cloud droplets in a fractal environment T. S. Kumykov, R. I. Parovik Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 1(10), 12–17
|
|
2. |
O. D. Lipko, “Matematicheskaya model rasprostraneniya nervnogo impulsa s uchetom ereditarnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 1(17), 33–43  |
→ |
Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction R. I. Parovik Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 1(10), 18–24
|
3. |
E. R. Novikova, “Ostsillyator Van-der-Polya–Duffinga c effektom ereditarnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 2(18), 65–75  |
→ |
Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction R. I. Parovik Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 1(10), 18–24
|
|
4. |
P. M. Nagorskii, T. A. Zenchenko, K. N. Pustovalov, M. S. Cherepnev, G. A. Yakovlev, V. S. Yakovleva, “Vliyanie goroda (tekhnosfery) na variatsii elektrofizicheskikh i radiatsionnykh velichin”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 4(20), 64–75  |
→ |
The development of radiation monitoring technology for urban environment V. S. Yakovleva, P. M. Nagorskiy Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 1(10), 65–71
|
|
5. |
O. D. Lipko, “Matematicheskaya model rasprostraneniya nervnogo impulsa s uchetom ereditarnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 1(17), 33–43  |
→ |
Finite-difference scheme for fractal oscillator with a variable fractional order R. I. Parovik Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 2(11), 88–95
|
6. |
D. A. Tverdyi, “Uravnenie Rikkati s peremennoi ereditarnostyu”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 1(17), 44–53  |
→ |
Finite-difference scheme for fractal oscillator with a variable fractional order R. I. Parovik Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 2(11), 88–95
|
7. |
S. V. Myshkin, “Ob odnom modelnom integro-differentsialnom uravnenii Bernulli”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 2(18), 59–64  |
→ |
Finite-difference scheme for fractal oscillator with a variable fractional order R. I. Parovik Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 2(11), 88–95
|
|
8. |
M. Mamazhonov, Kh. M. Shermatova, “Ob odnoi kraevoi zadache dlya uravneniya tretego poryadka parabolo-giperbolicheskogo tipa v vognutoi shestiugolnoi oblasti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 1(17), 14–21  |
→ |
Statement and study of some boundary value problem for third order equation of parabolic-hyperbolic type type $\frac{\partial}{\partial{x}}(Lu) = 0$ in a pentagonal area M. Mamajonov, Kh. B. Mamadalieva Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 1(12), 32–40
|
|
9. |
M. Mamazhonov, Kh. M. Shermatova, “Ob odnoi kraevoi zadache dlya uravneniya tretego poryadka parabolo-giperbolicheskogo tipa v vognutoi shestiugolnoi oblasti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 1(17), 14–21  |
→ |
Some boundary value problems for an equation of the third order parabolic-hyperbolic type in a pentagonal area M. Mamajonov, S. M. Mamajonov, Kh. B. Mamadalieva Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 2(13), 34–42
|
|
10. |
E. R. Novikova, “Ostsillyator Van-der-Polya–Duffinga c effektom ereditarnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 2(18), 65–75  |
→ |
Mathematical modeling of nonlinear oscillators hereditarity example Duffing oscillator with fractional derivatives in the Riemann-Liouville I. V. Drobysheva Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 2(13), 43–49
|
|
11. |
E. R. Novikova, “Ostsillyator Van-der-Polya–Duffinga c effektom ereditarnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 2017, № 2(18), 65–75  |
→ |
Duffing oscillator with an external harmonic impact and derived variables fractional Remann-Liouville, is characterized by viscous friction V. A. Kim Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 2(13), 50–54
|
|
12. |
F.T. Bogatyreva, “Zadacha Dirikhle dlya uravneniya drobnogo poryadka s postoyannymi koeffitsientami”, Chelyab. fiz.-matem. zhurn., 2:4 (2017), 401–411  |
→ |
Initial value problem for fractional order equation with constant coefficients F.T. Bogatyreva Vestnik KRAUNC. Fiz.-Mat. Nauki, 2016, no. 4-1(16), 21–26
|
|
Total publications: |
396 |
Scientific articles: |
390 |
Authors: |
361 |
Citations: |
144 |
Cited articles: |
86 |
|