|
2-летний импакт-фактор Math-Net.Ru журнала «Algebra and Discrete Mathematics», 2019 год
2-летний импакт-фактор Math-Net.Ru журнала за 2019 год — это количество ссылок
в 2019 г. на научные статьи журнала, опубликованные в 2017–2018 гг.,
деленное на общее число научных статей, опубликованных в журнале в этот период.
В приведенной ниже таблице приводится список цитирования в 2019 г.
научных статей журнала, опубликованных в 2017–2018 гг.
При подсчете учитываются все
цитирующие публикации, найденные нами из различных источников,
в первую очередь из списков литературы публикаций, представленных
на портале. Учитываются ссылки как на оригинальные, так и на
переводные версии статей.
При нахождении новых ссылок на журнал импакт-фактор Math–Net.Ru
может изменяться.
Год |
2-летний импакт-фактор Math-Net.Ru |
Научных статей |
Цитирований |
Цитированных статей |
Самоцитирований журнала |
2019 |
0.245 |
94 |
23 |
15 |
17.4% |
|
|
№ |
Цитирующая статья |
|
Цитированная статья |
|
1. |
V. Futorny, J. Schwarz, “Quantum linear Galois orders”, Commun. Algebr., 47:12 (2019), 5361–5369  |
→ |
Galois orders of symmetric differential operators Vyacheslav Futorny, João Schwarz Algebra Discrete Math., 23:1 (2017), 35–46
|
|
2. |
M. Saorin, A. Zimmermann, “Symmetry of the definition of degeneration in triangulated categories”, Algebr. Represent. Theory, 22:4 (2019), 801–836  |
→ |
Dg algebras with enough idempotents, their $\mathrm{dg}$ modules and their derived categories Manuel Saorín Algebra Discrete Math., 23:1 (2017), 62–137
|
|
3. |
V. Futorny, L. Krizka, “Geometric construction of Gelfand-Tsetlin modules over simple lie algebras”, J. Pure Appl. Algebr., 223:11 (2019), 4901–4924  |
→ |
A new way to construct $1$-singular Gelfand-Tsetlin modules Pablo Zadunaisky Algebra Discrete Math., 23:1 (2017), 180–193
|
4. |
V. Futorny, L. E. Ramirez, J. Zhang, “Combinatorial construction of Gelfand-Tsetlin modules for gl(n)”, Adv. Math., 343 (2019), 681–711  |
→ |
A new way to construct $1$-singular Gelfand-Tsetlin modules Pablo Zadunaisky Algebra Discrete Math., 23:1 (2017), 180–193
|
|
5. |
Ch. G. Cox, “A note on the r-infinity property for groups falt(x)<= G <= sym(x)”, Commun. Algebr., 47:3 (2019), 978–989  |
→ |
The $R_{\infty}$ property for Houghton's groups Jang Hyun Jo, Jong Bum Lee, Sang Rae Lee Algebra Discrete Math., 23:2 (2017), 249–262
|
|
6. |
M. Nikitchenko, O. Shkilniak, S. Shkilniak, “Program logics based on algebras with the composition of predicate complement”, 2019 9Th International Conference on Advanced Computer Information Technologies (Acit'2019), IEEE, 2019, 285–288  |
→ |
Algebras and logics of partial quasiary predicates Mykola Nikitchenko, Stepan Shkilniak Algebra Discrete Math., 23:2 (2017), 263–278
|
7. |
M. Nikitchenko, O. Shkilniak, S. Shkilniak, T. Mamedov, “Completeness of the first-order logic of partial quasiary predicates with the complement composition”, Comput. Sci. J. Mold., 27:2 (2019), 162–187  |
→ |
Algebras and logics of partial quasiary predicates Mykola Nikitchenko, Stepan Shkilniak Algebra Discrete Math., 23:2 (2017), 263–278
|
|
8. |
V. A. Chupordia, A. A. Pypka, N. N. Semko, V. S. Yashchuk, “Leibniz algebras: a brief review of current results”, Carpathian Math. Publ., 11:2 (2019), 250–257  |
→ |
Some aspects of Leibniz algebra theory Vladimir V. Kirichenko, Leonid A. Kurdachenko, Aleksandr A. Pypka, Igor Ya. Subbotin Algebra Discrete Math., 24:1 (2017), 1–33
|
9. |
Viktoriia S. Yashchuk, “On some Leibniz algebras having small dimension”, Algebra Discrete Math., 27:2 (2019), 292–308  |
→ |
Some aspects of Leibniz algebra theory Vladimir V. Kirichenko, Leonid A. Kurdachenko, Aleksandr A. Pypka, Igor Ya. Subbotin Algebra Discrete Math., 24:1 (2017), 1–33
|
|
10. |
K. Selvakumar, M. Subajini, M. J. Nikmehr, “On the genus of the essential graph of commutative rings”, Australas. J. Comb., 74:1 (2019), 74–85  |
→ |
On the genus of the annihilator graph of a commutative ring T. Tamizh Chelvam, K. Selvakumar Algebra Discrete Math., 24:2 (2017), 191–208
|
11. |
T. Asir, K. Mano, “The classification of rings with genus two class of graphs”, Univ. Politeh. Buchar. Sci. Bull.-Ser. A-Appl. Math. Phys., 81:1 (2019), 143–152  |
→ |
On the genus of the annihilator graph of a commutative ring T. Tamizh Chelvam, K. Selvakumar Algebra Discrete Math., 24:2 (2017), 191–208
|
|
12. |
X. Ma, G. L. Walls, K. Wang, “Power graphs of (non)orientable genus two”, Commun. Algebr., 47:1 (2019), 276–288  |
→ |
Embeddings of (proper) power graphs of finite groups A. Doostabadi, M. Farrokhi D.G. Algebra Discrete Math., 24:2 (2017), 221–234
|
|
13. |
M. R. Oboudi, “Distance spectral radius of complete multipartite graphs and majorization”, Linear Alg. Appl., 583 (2019), 134–145  |
→ |
On the difference between the spectral radius and the maximum degree of graphs Mohammad Reza Oboudi Algebra Discrete Math., 24:2 (2017), 302–307
|
14. |
M. R. Oboudi, “A new lower bound for the energy of graphs”, Linear Alg. Appl., 580 (2019), 384–395  |
→ |
On the difference between the spectral radius and the maximum degree of graphs Mohammad Reza Oboudi Algebra Discrete Math., 24:2 (2017), 302–307
|
15. |
M. R. Oboudi, “A relation between the signless Laplacian spectral radius of complete multipartite graphs and majorization”, Linear Alg. Appl., 565 (2019), 225–238  |
→ |
On the difference between the spectral radius and the maximum degree of graphs Mohammad Reza Oboudi Algebra Discrete Math., 24:2 (2017), 302–307
|
|
16. |
D. A. Mojdeh, M. Alishahi, “Outer independent global dominating set of trees and unicyclic graphs”, Electron. J. Graph Theory Appl., 7:1 (2019), 121–145  |
→ |
Global outer connected domination number of a graph Morteza Alishahi, Doost Ali Mojdeh Algebra Discrete Math., 25:1 (2018), 18–26
|
|
17. |
A. I. Kashu, “Adjoint functors, preradicals and closure operators in module categories”, Algebra Discrete Math., 28:2 (2019), 260–277  |
→ |
Closure operators in modules and adjoint functors, I A. I. Kashu Algebra Discrete Math., 25:1 (2018), 98–117
|
|
18. |
D. V. Skokov, B. M. Vernikov, “On modular and cancellable elements of the lattice of semigroup varieties”, Сиб. электрон. матем. изв., 16 (2019), 175–186  |
→ |
Cancellable elements of the lattice of semigroup varieties Sergey V. Gusev, Dmitry V. Skokov, Boris M. Vernikov Algebra Discrete Math., 26:1 (2018), 34–46
|
19. |
V. Yu. Shaprynskii, D. V. Skokov, B. M. Vernikov, “Cancellable elements of the lattices of varieties of semigroups and epigroups”, Commun. Algebr., 47:11 (2019), 4697–4712  |
→ |
Cancellable elements of the lattice of semigroup varieties Sergey V. Gusev, Dmitry V. Skokov, Boris M. Vernikov Algebra Discrete Math., 26:1 (2018), 34–46
|
|
20. |
V. A. Chupordia, A. A. Pypka, N. N. Semko, V. S. Yashchuk, “Leibniz algebras: a brief review of current results”, Carpathian Math. Publ., 11:2 (2019), 250–257  |
→ |
On the anticommutativity in Leibniz algebras Leonid A. Kurdachenko, Nikolaj N. Semko, Igor Ya. Subbotin Algebra Discrete Math., 26:1 (2018), 97–109
|
|
|
Публикаций: |
779 |
Научных статей: |
737 |
Авторов: |
890 |
Ссылок на журнал: |
1324 |
Цитированных статей: |
381 |
 |
Индексы Scopus |
|
2019 |
SJR |
0.371 |
|
2018 |
CiteScore |
0.260 |
|
2018 |
SJR |
0.370 |
|
2017 |
CiteScore |
0.310 |
|
2017 |
SNIP |
0.717 |
|
2017 |
SJR |
0.241 |
|
2016 |
CiteScore |
0.320 |
|
2016 |
SNIP |
0.946 |
|
2016 |
SJR |
0.304 |
|
2015 |
CiteScore |
0.240 |
|
2015 |
SNIP |
0.491 |
|
2015 |
IPP |
0.233 |
|
2015 |
SJR |
0.309 |
|
2014 |
CiteScore |
0.250 |
|
2014 |
SNIP |
0.780 |
|
2014 |
IPP |
0.209 |
|
2014 |
SJR |
0.194 |
|
2013 |
SNIP |
0.093 |
|
2013 |
IPP |
0.024 |
|
2013 |
SJR |
0.123 |
|