|
2-years impact-factor Math-Net.Ru of «Sibirskii Zhurnal Vychislitel'noi Matematiki» journal, 2011
2-years impact-factor Math-Net.Ru of the journal in 2011 is calculated
as the number of citations in 2011 to the scientific papers published during
2009–2010.
The table below contains the list of citations in 2011 to the papers
published in 2009–2010. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2011 |
0.441 |
68 |
30 |
20 |
26.7% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
Z. Kamont, K. Kropelnitska, “Neyavnye raznostnye metody dlya evolyutsionnykh funktsionalno-differentsialnykh uravnenii”, Sib. zhurn. vychisl. matem., 14:4 (2011), 361–379  |
→ |
Implicit difference methods for Hamilton Jacobi functional differential equations Z. Kamont, W. Czernous Sib. Zh. Vychisl. Mat., 12:1 (2009), 57–70
|
|
2. |
S. N. Korobeinikov, V. V. Reverdatto, O. P. Polyanskii, V. G. Sverdlova, A. V. Babichev, “O vliyanii vybora reologicheskogo zakona na rezultaty kompyuternogo modelirovaniya subduktsii plit”, Sib. zhurn. vychisl. matem., 14:1 (2011), 71–90  |
→ |
Computer simulation of underthrust and subduction at collision of plates S. N. Korobeinikov, V. V. Reverdatto, O. P. Polyanskii, V. G. Sverdlova, A. V. Babichev Sib. Zh. Vychisl. Mat., 12:1 (2009), 71–90
|
|
3. |
Hou Ch., Chen Ya., Lu Z., “Superconvergence Property of Finite Element Methods for Parabolic Optimal Control Problems”, J. Ind. Manag. Optim., 7:4 (2011), 927–945  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
4. |
Deng K., Chen Ya., Lu Z., “Higher Order Triangular Mixed Finite Element Methods for Semi Linear Quadratic Optimal Control Problems”, Numer. Math.-Theory Methods Appl., 4:2, SI (2011), 180–196  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
5. |
Lu Z., “Adaptive Mixed Finite Element Methods for Parabolic Optimal Control Problems”, Math. Probl. Eng., 2011, 217493  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
6. |
Lu Zuliang, Huang Xiao, “A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Integro-Differential Equations”, 2011 30th Chinese Control Conference (Ccc), IEEE, 2011, 1839–1844  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
7. |
Lu Z., Huang X., “A Priori Error Estimates of Mixed Methods for Optimal Control Problems Governed by Parabolic Equations”, 2011 International Conference on Energy and Environmental Science-Icees 2011, Energy Procedia, 11, ed. Zhou X., Elsevier Science BV, 2011, 1621–1625  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
8. |
Lu Z., Huang X., “Error Estimates of Triangular Mixed Finite Element Methods for Distributed Parameter Systems”, 2011 Chinese Control and Decision Conference, Vols 1-6, Chinese Control and Decision Conference, IEEE, 2011, 2285–2290  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
|
9. |
M. V. Urev, “Skhodimost diskretnoi skhemy v metode regulyarizatsii kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matem., 14:3 (2011), 319–332  |
→ |
A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium I. A. Kremer, M. V. Urev Sib. Zh. Vychisl. Mat., 12:2 (2009), 161–170
|
10. |
I. A. Kremer, M. V. Urev, “Metod regulyarizatsii dlya kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 35–44  |
→ |
A regularization method for the stationary Maxwell equations in an inhomogeneous conducting medium I. A. Kremer, M. V. Urev Sib. Zh. Vychisl. Mat., 12:2 (2009), 161–170
|
|
11. |
Romanov L.N., “Statisticheskoe modelirovanie pogody s ispolzovaniem globalnoi informatsii”, Trudy Sibirskogo regionalnogo nauchno-issledovatelskogo gidrometeorologicheskogo instituta, 2011, № 106, 44–53  |
→ |
On minimization of risk for restoration of atmospheric data L. N. Romanov Sib. Zh. Vychisl. Mat., 12:2 (2009), 211–219
|
12. |
Romanov L.N., Bochkareva Elena Grigorevna., Bogdanova V.F., “Gidrologicheskii dolgosrochnyi prognoz v usloviyakh Novosibirskogo vodokhranilischa”, Trudy Sibirskogo regionalnogo nauchno-issledovatelskogo gidrometeorologicheskogo instituta, 2011, № 106, 89–102  |
→ |
On minimization of risk for restoration of atmospheric data L. N. Romanov Sib. Zh. Vychisl. Mat., 12:2 (2009), 211–219
|
|
13. |
Khatuntseva O.N., “Analiz prichin vozniknoveniya aerodinamicheskogo gisterezisa pri letnykh ispytaniyakh spuskaemogo apparata “soyuz” na giperzvukovom uchastke spuska”, Prikladnaya mekhanika i tekhnicheskaya fizika, 52:4 (2011), 52–62  |
→ |
A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth O. N. Khatuntseva Sib. Zh. Vychisl. Mat., 12:2 (2009), 231–241
|
|
14. |
Sharyi S.P., “Ob “ispanskoi versii” formalnogo podkhoda k vneshnemu otsenivaniyu mnozhestv reshenii intervalnykh lineinykh sistem”, Vychislitelnye tekhnologii, 16:3 (2011), 100–133  |
→ |
On comparison between Apostolatos–Kulisch and Mayer–Warnke theorems in interval analysis S. P. Shary Sib. Zh. Vychisl. Mat., 12:3 (2009), 351–359
|
|
15. |
V. A. Amelkin, “Resheniya perechislitelnykh zadach odnoperekhodnykh seriinykh posledovatelnostei s ogranichennym sverkhu prirascheniem vysot sosednikh serii”, Sib. zhurn. vychisl. matem., 14:2 (2011), 119–130  |
→ |
Numeration of non-decreasing and non-increasing serial sequences V. A. Amelkin Sib. Zh. Vychisl. Mat., 12:4 (2009), 389–401
|
|
16. |
N. N. Kushniruk, R. V. Namm, A. S. Tkachenko, “Ob ustoichivom sglazhivayuschem metode resheniya modelnoi zadachi mekhaniki s treniem”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1032–1042  |
→ |
The Lagrange multipliers method for solving a semicoercive model problem with friction N. N. Kushniruk, R. V. Namm Sib. Zh. Vychisl. Mat., 12:4 (2009), 409–420
|
17. |
N. N. Kushniruk, R. V. Namm, “Iterativnaya proksimalnaya regulyarizatsiya modifitsirovannogo funktsionala Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sib. zhurn. vychisl. matem., 14:4 (2011), 381–396  |
→ |
The Lagrange multipliers method for solving a semicoercive model problem with friction N. N. Kushniruk, R. V. Namm Sib. Zh. Vychisl. Mat., 12:4 (2009), 409–420
|
|
18. |
M. V. Urev, “Skhodimost diskretnoi skhemy v metode regulyarizatsii kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Sib. zhurn. vychisl. matem., 14:3 (2011), 319–332  |
→ |
Solution of a regularized problem for a stationary magnetic field in a non-homogeneous conducting medium by a finite element method I. A. Kremer, M. V. Urev Sib. Zh. Vychisl. Mat., 13:1 (2010), 33–49
|
19. |
I. A. Kremer, M. V. Urev, “Metod regulyarizatsii dlya kvazistatsionarnoi sistemy Maksvella v neodnorodnoi provodyaschei srede”, Vestn. NGU. Ser. matem., mekh., inform., 11:1 (2011), 35–44  |
→ |
Solution of a regularized problem for a stationary magnetic field in a non-homogeneous conducting medium by a finite element method I. A. Kremer, M. V. Urev Sib. Zh. Vychisl. Mat., 13:1 (2010), 33–49
|
|
20. |
E. D. Moskalenskii, “Formuly, zadayuschie polozhenie fronta volny, rasprostranyayuscheisya v srede so stepennoi zavisimostyu skorosti ot koordinaty”, Sib. zhurn. vychisl. matem., 14:2 (2011), 169–178  |
→ |
On detecting a wavefront described by 2D eikonal equation, when velocity in a medium depends on one spatial variable E. D. Moskalensky Sib. Zh. Vychisl. Mat., 13:1 (2010), 67–73
|
|
|
Total publications: |
758 |
Scientific articles: |
728 |
Authors: |
740 |
Citations: |
1567 |
Cited articles: |
422 |
 |
Scopus Metrics |
|
2019 |
SJR |
0.228 |
|
2018 |
CiteScore |
0.610 |
|
2018 |
SJR |
0.382 |
|
2017 |
CiteScore |
0.450 |
|
2017 |
SNIP |
0.440 |
|
2017 |
SJR |
0.164 |
|
2016 |
CiteScore |
0.330 |
|
2016 |
SNIP |
0.534 |
|
2016 |
SJR |
0.138 |
|
2015 |
CiteScore |
0.180 |
|
2015 |
SNIP |
0.347 |
|
2015 |
IPP |
0.136 |
|
2015 |
SJR |
0.146 |
|
2014 |
CiteScore |
0.310 |
|
2014 |
SNIP |
0.673 |
|
2014 |
IPP |
0.308 |
|
2014 |
SJR |
0.220 |
|
2013 |
SNIP |
0.652 |
|
2013 |
IPP |
0.223 |
|
2013 |
SJR |
0.189 |
|
2012 |
SNIP |
0.415 |
|
2012 |
IPP |
0.200 |
|
2012 |
SJR |
0.153 |
|