|
5-years impact-factor Math-Net.Ru of «Sibirskii Zhurnal Vychislitel'noi Matematiki» journal, 2014
5-years impact-factor Math-Net.Ru of the journal in 2014 is calculated
as the number of citations in 2014 to the scientific papers published during
2009–2013.
The table below contains the list of citations in 2014 to the papers
published in 2009–2013. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
5-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2014 |
0.302 |
172 |
52 |
39 |
11.5% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
V. G. Pimenov, S. V. Sviridov, “Setochnye metody resheniya uravneniya perenosa s zapazdyvaniem”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2014, № 3, 59–74  |
→ |
Implicit difference methods for Hamilton Jacobi functional differential equations Z. Kamont, W. Czernous Sib. Zh. Vychisl. Mat., 12:1 (2009), 57–70
|
2. |
V. Pimenov, S. Sviridov, “Numerical methods for advection equations with delay”, Applications of Mathematics in Engineering and Economics (AMEE'14), AIP Conf. Proc., 1631, eds. G. Venkov, V. Pasheva, Amer. Inst. Phys., 2014, 114–121  |
→ |
Implicit difference methods for Hamilton Jacobi functional differential equations Z. Kamont, W. Czernous Sib. Zh. Vychisl. Mat., 12:1 (2009), 57–70
|
|
3. |
Hou T., “Error Estimates of Rt1 Mixed Methods for Distributed Optimal Control Problems”, Bull. Korean. Math. Soc., 51:1 (2014), 139–156  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
4. |
Lu Z., “L-Infinity-Estimates of Rectangular Mixed Methods for Nonlinear Constrained Optimal Control Problem”, Bull. Malays. Math. Sci. Soc., 37:1 (2014), 271–284  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
5. |
Lu Z., “a Posteriori Error Estimates of Fully Discrete Finite-Element Schemes For Nonlinear Parabolic Integro-Differential Optimal Control Problems”, Adv. Differ. Equ., 2014, 15  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
6. |
Lu Z., Huang X., “a Priori Error Estimates of Mixed Finite Element Methods For General Linear Hyperbolic Convex Optimal Control Problems”, Abstract Appl. Anal., 2014, 547490  |
→ |
$L^\infty$-error estimates of triangular mixed finite element methods for optimal control problems governed by semilinear elliptic equations Zuliang Lu, Yanping Chen Sib. Zh. Vychisl. Mat., 12:1 (2009), 91–105
|
|
7. |
E. D. Moskalenskii, “O nakhozhdenii tochnykh reshenii dvumernogo uravneniya eikonala dlya sluchaya, kogda front volny, rasprostranyayuscheisya v srede, yavlyaetsya okruzhnostyu”, Sib. zhurn. vychisl. matem., 17:4 (2014), 363–372  |
→ |
Finding exact solutions to the two-dimensional eikonal equation E. D. Moskalenskii Sib. Zh. Vychisl. Mat., 12:2 (2009), 201–209
|
8. |
Molitor M., “Gaussian Distributions, Jacobi Group, and Siegel-Jacobi Space”, J. Math. Phys., 55:12 (2014), 122102  |
→ |
Finding exact solutions to the two-dimensional eikonal equation E. D. Moskalenskii Sib. Zh. Vychisl. Mat., 12:2 (2009), 201–209
|
|
9. |
E. M. Vikhtenko, N. N. Maksimova, R. V. Namm, “Funktsionaly chuvstvitelnosti v variatsionnykh neravenstvakh mekhaniki i ikh prilozhenie k skhemam dvoistvennosti”, Sib. zhurn. vychisl. matem., 17:1 (2014), 43–52  |
→ |
The Lagrange multipliers method for solving a semicoercive model problem with friction N. N. Kushniruk, R. V. Namm Sib. Zh. Vychisl. Mat., 12:4 (2009), 409–420
|
10. |
E. M. Vikhtenko, G. S. Vu, R. V. Namm, “Metody resheniya polukoertsitivnykh variatsionnykh neravenstv mekhaniki na osnove modifitsirovannykh funktsionalov Lagranzha”, Dalnevost. matem. zhurn., 14:1 (2014), 6–17  |
→ |
The Lagrange multipliers method for solving a semicoercive model problem with friction N. N. Kushniruk, R. V. Namm Sib. Zh. Vychisl. Mat., 12:4 (2009), 409–420
|
|
11. |
Penenko V.V., Tsvetova E.A., “Methods of Environmental Quality Assessments in Conditions of Climate Variability”, 20Th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Proceedings of Spie, 9292, eds. Matvienko G., Romanovski O., Spie-Int Soc Optical Engineering, 2014, 929245  |
→ |
Variational methods of data assimilation and inverse problems for studying the atmosphere, ocean, and environment V. V. Penenko Sib. Zh. Vychisl. Mat., 12:4 (2009), 421–434
|
|
12. |
Butyugin D.S., Il'in V.P., “Solution of Problems of Harmonic Electromagnetic Field Simulation in Regularized and Mixed Formulations”, Russ. J. Numer. Anal. Math. Model, 29:1 (2014), 1–12  |
→ |
Solution of a regularized problem for a stationary magnetic field in a non-homogeneous conducting medium by a finite element method I. A. Kremer, M. V. Urev Sib. Zh. Vychisl. Mat., 13:1 (2010), 33–49
|
|
13. |
E. V. Strelkova, V. T. Shevaldin, “Lokalnye eksponentsialnye splainy s proizvolnymi uzlami”, Tr. IMM UrO RAN, 20, № 1, 2014, 258–263  |
→ |
Local $\mathcal L$-splines preserving the differential operator kernel E. V. Shevaldina Sib. Zh. Vychisl. Mat., 13:1 (2010), 111–121
|
|
14. |
Svetov I.E. Derevtsov E.Yu. Volkov Yu.S. Schuster T., “A Numerical Solver Based on B-Splines for 2D Vector Field Tomography in a Refracting Medium”, Math. Comput. Simul., 97 (2014), 207–223  |
→ |
Reconstruction of 2-tensor fields, given in a unit circle, by their ray transforms based on LSM with $B$-splines I. E. Svetov, A. P. Polyakova Sib. Zh. Vychisl. Mat., 13:2 (2010), 183–199
|
|
15. |
S. V. Ivanov, “Dvukhurovnevye zadachi stokhasticheskogo lineinogo programmirovaniya s kvantilnym kriteriem”, Avtomat. i telemekh., 2014, № 1, 130–144  |
→ |
Numerical solution of a class of bilevel programming problems A. S. Strekalovsky, A. V. Orlov, A. V. Malyshev Sib. Zh. Vychisl. Mat., 13:2 (2010), 201–212
|
|
16. |
Yu. S. Volkov, Yu. N. Subbotin, “50 let zadache Shenberga o skhodimosti splain-interpolyatsii”, Tr. IMM UrO RAN, 20, № 1, 2014, 52–67  |
→ |
The inverses of cyclic band matrices and the convergence of interpolation processes for derivatives of periodic interpolation splines Yu. S. Volkov Sib. Zh. Vychisl. Mat., 13:3 (2010), 243–253
|
|
17. |
V. I. Tarakanov, S. A. Lysenkova, M. V. Nesterenko, “Iteratsionnaya skhema nakhozhdeniya spektra ot proizvedeniya dvukh nekommutativnykh operatorov”, Sib. zhurn. vychisl. matem., 17:4 (2014), 411–427  |
→ |
An iterative algorithm of investigation and numerical solution of spectral problems for a linear bunch of compact, partially symmetric operators V. I. Tarakanov, M. V. Nesterenko Sib. Zh. Vychisl. Mat., 13:3 (2010), 343–359
|
|
18. |
G. V. Stoica, R. Dogaru, E. C. Stoica, “Speeding-up image processing in reaction-diffusion cellular neural networks using CUDA-enabled GPU platforms”, Proceedings of the 2014 6th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), International Conference on Electronics Computers and Artificial Intelligence, IEEE, 2014  |
→ |
Implementation of algorithms with a fine-grained parallelism on GPUs K. V. Kalgin Sib. Zh. Vychisl. Mat., 14:1 (2011), 59–70
|
|
19. |
Polyansky O.P., Korobeynikov S.N., Babichev A.V., Reverdatto V.V., Sverdlova V.G., “Numerical Modeling of Mantle Diapirism as a Cause of Intracontinental Rifting”, Izv.-Phys. Solid Earth, 50:6 (2014), 839–852  |
→ |
Influence of the choice of a rheological law on computer simulation results of slab subduction S. N. Korobeynikov, V. V. Reverdatto, O. P. Polyansky, V. G. Sverdlova, A. V. Babichev Sib. Zh. Vychisl. Mat., 14:1 (2011), 71–90
|
|
20. |
Appice A., Ciampi A., Fumarola F., Malerba D., “Missing Sensor Data Interpolation”: Appice, A Ciampi, A Fumarola, F Malerba, D, Data Mining Techniques in Sensor Networks: Summarization, Interpolation and Surveillance, Springerbriefs in Computer Science, Springer, 2014, 49–71  |
→ |
Estimation of fractal dimension of random fields on the basis of variance analysis of increments S. M. Prigarin, K. Hahn, G. Winkler Sib. Zh. Vychisl. Mat., 14:1 (2011), 91–102
|
|
|
Total publications: |
758 |
Scientific articles: |
728 |
Authors: |
740 |
Citations: |
1567 |
Cited articles: |
422 |
 |
Scopus Metrics |
|
2019 |
SJR |
0.228 |
|
2018 |
CiteScore |
0.610 |
|
2018 |
SJR |
0.382 |
|
2017 |
CiteScore |
0.450 |
|
2017 |
SNIP |
0.440 |
|
2017 |
SJR |
0.164 |
|
2016 |
CiteScore |
0.330 |
|
2016 |
SNIP |
0.534 |
|
2016 |
SJR |
0.138 |
|
2015 |
CiteScore |
0.180 |
|
2015 |
SNIP |
0.347 |
|
2015 |
IPP |
0.136 |
|
2015 |
SJR |
0.146 |
|
2014 |
CiteScore |
0.310 |
|
2014 |
SNIP |
0.673 |
|
2014 |
IPP |
0.308 |
|
2014 |
SJR |
0.220 |
|
2013 |
SNIP |
0.652 |
|
2013 |
IPP |
0.223 |
|
2013 |
SJR |
0.189 |
|
2012 |
SNIP |
0.415 |
|
2012 |
IPP |
0.200 |
|
2012 |
SJR |
0.153 |
|