|
2-years impact-factor Math-Net.Ru of «Sibirskii Zhurnal Vychislitel'noi Matematiki» journal, 2018
2-years impact-factor Math-Net.Ru of the journal in 2018 is calculated
as the number of citations in 2018 to the scientific papers published during
2016–2017.
The table below contains the list of citations in 2018 to the papers
published in 2016–2017. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2018 |
0.646 |
65 |
42 |
24 |
19% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. Yu. Ambos, G. A. Mikhailov, “Otsenka metodom Monte-Karlo funktsionalnykh kharakteristik polya intensivnosti, prokhodyaschego cherez sluchainuyu sredu izlucheniya”, Sib. zhurn. vychisl. matem., 21:4 (2018), 349–365  |
→ |
Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer A. Yu. Ambos Sib. Zh. Vychisl. Mat., 19:1 (2016), 19–32
|
2. |
G. A. Mikhailov, G. Z. Lotova, “Metody Monte-Karlo dlya otsenki veroyatnostnykh raspredelenii parametrov kritichnosti protsessa perenosa chastits v sluchaino vozmuschennoi srede”, Zh. vychisl. matem. i matem. fiz., 58:11 (2018), 1900–1910  |
→ |
Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer A. Yu. Ambos Sib. Zh. Vychisl. Mat., 19:1 (2016), 19–32
|
3. |
G. Mikhailov, “Optimizatsiya randormizirovannykh algoritmov metoda Monte-Karlo dlya resheniya zadach so sluchainymi parametrami”, Dokl. RAN, 482:3 (2018), 254–258  |
→ |
Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer A. Yu. Ambos Sib. Zh. Vychisl. Mat., 19:1 (2016), 19–32
|
4. |
A. Yu. Ambos, G. A. Mikhailov, “Numerically statistical simulation of the intensity field of the radiation transmitted through a random medium”, Russ. J. Numer. Anal. Math. Model, 33:3 (2018), 161–171  |
→ |
Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer A. Yu. Ambos Sib. Zh. Vychisl. Mat., 19:1 (2016), 19–32
|
5. |
G. A. Mikhailov, G. Z. Lotova, “Novye algoritmy metoda Monte-Karlo dlya otsenki veroyatnostnykh momentov parametrov kritichnosti protsessa rasseyaniya chastits s razmnozheniem v sluchainykh sredakh”, Dokl. RAN, 478:1 (2018), 12–16  |
→ |
Numerical models of mosaic homogeneous isotropic random fields and problems of radiative transfer A. Yu. Ambos Sib. Zh. Vychisl. Mat., 19:1 (2016), 19–32
|
|
6. |
I. A. Blatov, A. I. Zadorin, E. V. Kitaeva, “O ravnomernoi po parametru skhodimosti eksponentsialnoi splain-interpolyatsii pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 58:3 (2018), 365–382  |
→ |
Convergence of the adapting grid method of Bakhvalov's type for singularly perturbed boundary value problems I. A. Blatov, E. V. Kitaeva Sib. Zh. Vychisl. Mat., 19:1 (2016), 47–59
|
|
7. |
V. I. Vasilev, M. V. Vasileva, A. V. Grigorev, G. A. Prokopev, “Matematicheskoe modelirovanie zadachi dvukhfaznoi filtratsii v neodnorodnykh treschinovato-poristykh sredakh s ispolzovaniem modeli dvoinoi poristosti i metoda konechnykh elementov”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 160, № 1, Izd-vo Kazanskogo un-ta, Kazan, 2018, 165–182  |
→ |
Numerical modeling of a fluid flow in anisotropic fractured porous media P. N. Vabishchevich, A. V. Grigoriev Sib. Zh. Vychisl. Mat., 19:1 (2016), 61–74
|
8. |
Yu. M. Laevsky, A. V. Grigor'ev, P. G. Yakovlev, “On a double porosity model of fractured-porous reservoirs based on a hybrid flow function”, Numer. Anal. Appl., 11:2 (2018), 121–133  |
→ |
Numerical modeling of a fluid flow in anisotropic fractured porous media P. N. Vabishchevich, A. V. Grigoriev Sib. Zh. Vychisl. Mat., 19:1 (2016), 61–74
|
|
9. |
S. I. Kabanikhin, O. I. Krivorotko, “Algoritm vosstanovleniya istochnika vozmuschenii v sisteme nelineinykh uravnenii melkoi vody”, Zh. vychisl. matem. i matem. fiz., 58:8 (2018), 138–147  |
→ |
A numerical algorithm for computing tsunami wave amplitude S. I. Kabanikhin, O. I. Krivorotko Sib. Zh. Vychisl. Mat., 19:2 (2016), 153–165
|
|
10. |
V. M. Sveshnikov, A. O. Savchenko, A. V. Petukhov, “Chislennoe reshenie trekhmernykh vneshnikh kraevykh zadach dlya uravneniya Laplasa metodom dekompozitsii raschetnoi oblasti bez peresecheniya”, Sib. zhurn. vychisl. matem., 21:4 (2018), 435–449  |
→ |
Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids V. D. Korneev, V. M. Sveshnikov Sib. Zh. Vychisl. Mat., 19:2 (2016), 183–194
|
11. |
N. A. Kazarinov, E. M. Rudoi, V. Yu. Slesarenko, V. V. Scherbakov, “Matematicheskoe i chislennoe modelirovanie ravnovesiya uprugogo tela, armirovannogo tonkim uprugim vklyucheniem”, Zh. vychisl. matem. i matem. fiz., 58:5 (2018), 790–805  |
→ |
Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids V. D. Korneev, V. M. Sveshnikov Sib. Zh. Vychisl. Mat., 19:2 (2016), 183–194
|
12. |
E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26  |
→ |
Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids V. D. Korneev, V. M. Sveshnikov Sib. Zh. Vychisl. Mat., 19:2 (2016), 183–194
|
|
13. |
R. D. Al-Dabbagh, F. Neri, N. Idris, M. S. Baba, “Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy”, Swarm Evol. Comput., 43 (2018), 284–311  |
→ |
Application of differential evolution algorithm for optimization of strategies based on financial time series O. G. Monakhov, E. A. Monakhova, M. Pant Sib. Zh. Vychisl. Mat., 19:2 (2016), 195–205
|
|
14. |
S. Larisa, “Intermediate self-similar asymptotic presentation of stress and damage fields in the vicinity of mixed mode crack tip under creep regime”, ECF22 — Loading and Environmental Effects on Structural Integrity, Procedia Structural Integrity, 13, eds. A. Sedmak, Z. Radakovic, M. Rakin, Elsevier Science BV, 2018, 255–260  |
→ |
Asymptotics of eigenvalues of the nonlinear eigenvalue problem arising from the near mixed-mode crack-tip stress-strain field problems L. V. Stepanova, E. M. Yakovleva Sib. Zh. Vychisl. Mat., 19:2 (2016), 207–222
|
|
15. |
V A. Favorskaya, M. S. Zhdanov, I N. Khokhlov, I. B. Petrov, “Modelling the wave phenomena in acoustic and elastic media with sharp variations of physical properties using the grid-characteristic method”, Geophys. Prospect., 66:8 (2018), 1485–1502  |
→ |
The study of increased order grid-characteristic methods on unstructured grids A. V. Favorskaya, I. B. Petrov Sib. Zh. Vychisl. Mat., 19:2 (2016), 223–233
|
16. |
A. V. Favorskaya, I. B. Petrov, S. V. Kabisov, “Modelirovanie ultrazvukovykh voln v zheleznodorozhnykh relsakh s yavnym vydelenie defektov”, Dokl. RAN, 481:1 (2018), 20–23  |
→ |
The study of increased order grid-characteristic methods on unstructured grids A. V. Favorskaya, I. B. Petrov Sib. Zh. Vychisl. Mat., 19:2 (2016), 223–233
|
17. |
A. V. Favorskaya, I. B. Petrov, “Theory and practice of wave processes modelling”, Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, Smart Innovation Systems and Technologies, 90, eds. A. Favorskaya, I. Petrov, Springer-Verlag Berlin, 2018, 1–6  |
→ |
The study of increased order grid-characteristic methods on unstructured grids A. V. Favorskaya, I. B. Petrov Sib. Zh. Vychisl. Mat., 19:2 (2016), 223–233
|
18. |
A. V. Favorskaya, “Interpolation on unstructured tetrahedral grids”, Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, Smart Innovation Systems and Technologies, 90, eds. A. Favorskaya, I. Petrov, Springer-Verlag Berlin, 2018, 45–73  |
→ |
The study of increased order grid-characteristic methods on unstructured grids A. V. Favorskaya, I. B. Petrov Sib. Zh. Vychisl. Mat., 19:2 (2016), 223–233
|
19. |
A. V. Favorskaya, I. B. Petrov, “Grid-characteristic method”, Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, Smart Innovation Systems and Technologies, 90, eds. A. Favorskaya, I. Petrov, Springer-Verlag Berlin, 2018, 117–160  |
→ |
The study of increased order grid-characteristic methods on unstructured grids A. V. Favorskaya, I. B. Petrov Sib. Zh. Vychisl. Mat., 19:2 (2016), 223–233
|
20. |
A. V. Favorskaya, M. S. Zhdanov, “Migration of elastic fields based on Kirchhoff and Rayleigh integrals”, Innovations in Wave Processes Modelling and Decision Making: Grid-Characteristic Method and Applications, Smart Innovation Systems and Technologies, 90, eds. A. Favorskaya, I. Petrov, Springer-Verlag Berlin, 2018, 241–265  |
→ |
The study of increased order grid-characteristic methods on unstructured grids A. V. Favorskaya, I. B. Petrov Sib. Zh. Vychisl. Mat., 19:2 (2016), 223–233
|
|
|
Total publications: |
758 |
Scientific articles: |
728 |
Authors: |
740 |
Citations: |
1567 |
Cited articles: |
422 |
 |
Scopus Metrics |
|
2019 |
SJR |
0.228 |
|
2018 |
CiteScore |
0.610 |
|
2018 |
SJR |
0.382 |
|
2017 |
CiteScore |
0.450 |
|
2017 |
SNIP |
0.440 |
|
2017 |
SJR |
0.164 |
|
2016 |
CiteScore |
0.330 |
|
2016 |
SNIP |
0.534 |
|
2016 |
SJR |
0.138 |
|
2015 |
CiteScore |
0.180 |
|
2015 |
SNIP |
0.347 |
|
2015 |
IPP |
0.136 |
|
2015 |
SJR |
0.146 |
|
2014 |
CiteScore |
0.310 |
|
2014 |
SNIP |
0.673 |
|
2014 |
IPP |
0.308 |
|
2014 |
SJR |
0.220 |
|
2013 |
SNIP |
0.652 |
|
2013 |
IPP |
0.223 |
|
2013 |
SJR |
0.189 |
|
2012 |
SNIP |
0.415 |
|
2012 |
IPP |
0.200 |
|
2012 |
SJR |
0.153 |
|