|
2-years impact-factor Math-Net.Ru of «Teoreticheskaya i Matematicheskaya Fizika» journal, 2014
2-years impact-factor Math-Net.Ru of the journal in 2014 is calculated
as the number of citations in 2014 to the scientific papers published during
2012–2013.
The table below contains the list of citations in 2014 to the papers
published in 2012–2013. We take into account all citing publications
we found from different sources, mostly from references lists available
on Math-Net.Ru. Both original and translation versions are taken into account.
The impact factor Math-Net.Ru may change when new citations to a year
given are found.
Year |
2-years impact-factor Math-Net.Ru |
Scientific papers |
Citations |
Citated papers |
Journal Self-citations |
2014 |
0.780 |
268 |
209 |
115 |
15.3% |
|
|
N |
Citing pulication |
|
Cited paper |
|
1. |
A. A. Andrianov, V. A. Andrianov, D. Espriu, X. Planells, “Analysis of dilepton angular distributions in a parity breaking medium”, Phys. Rev. D, 90:3 (2014), 034024  |
→ |
Abnormal enhancement of dilepton yield in central heavy-ion collisions from local parity breaking A. A. Andrianov, V. A. Andrianov, D. Espriu, X. Planells TMF, 170:1 (2012), 22–33
|
2. |
A. A. Andrianov, V. A. Andrianov, D. Espriu, “Spontaneous parity violation under extreme conditions: an effective Lagrangian analysis”, Eur. Phys. J. C, 74:6 (2014), 2932  |
→ |
Abnormal enhancement of dilepton yield in central heavy-ion collisions from local parity breaking A. A. Andrianov, V. A. Andrianov, D. Espriu, X. Planells TMF, 170:1 (2012), 22–33
|
|
3. |
G. Calcagni, C. Kiefer, Ch. F. Steinwachs, “Quantum cosmological consistency condition for inflation”, J. Cosmol. Astropart. Phys., 2014, no. 10, 026  |
→ |
Tunneling cosmological state and the origin of Higgs inflation in the standard model A. O. Barvinsky TMF, 170:1 (2012), 62–86
|
|
4. |
A. Gulov, A. Kozhushko, “Estimates for the Abelian $Z'$ couplings from the LHC data”, Int. J. Mod. Phys. A, 29:1 (2014), 1450001, 11 pp.  |
→ |
Searches for $W'$ and $Z'$ in models with large extra dimensions E. E. Boos, I. P. Volobuev, M. A. Perfilov, M. N. Smolyakov TMF, 170:1 (2012), 110–117
|
5. |
Boos E.E., Bunichev V.E., Perfilov M.A., Smolyakov M.N., Volobuev I.P., “The Specificity of Searches For W', Z' and Gamma' Coming From Extra Dimensions”, J. High Energy Phys., 2014, no. 6, 160  |
→ |
Searches for $W'$ and $Z'$ in models with large extra dimensions E. E. Boos, I. P. Volobuev, M. A. Perfilov, M. N. Smolyakov TMF, 170:1 (2012), 110–117
|
|
6. |
A. Mirjalili, M. R. Khellat, “Higher-order prediction terms and fixing the renormalization scale using the BLM approach”, Int. J. Mod. Phys. A, 29:31 (2014), 1450178  |
→ |
New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models A. L. Kataev, S. V. Mikhailov TMF, 170:2 (2012), 174–187
|
7. |
Sh.-Q. Wang, X.-G. Wu, J.-M. Shen, H.-Y. Han, Ya. Ma, “QCD improved electroweak parameter $\rho$”, Phys. Rev. D, 89:11 (2014), 116001  |
→ |
New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models A. L. Kataev, S. V. Mikhailov TMF, 170:2 (2012), 174–187
|
8. |
Sh.-Q. Wang, X.-G. Wu, X.-Ch. Zheng, J.-M. Shen, Q.-L. Zhang, “The Higgs boson inclusive decay channels $H \to b\bar{b}$ and $H \to gg$ up to four-loop level”, Eur. Phys. J. C, 74:4 (2014), 2825  |
→ |
New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models A. L. Kataev, S. V. Mikhailov TMF, 170:2 (2012), 174–187
|
9. |
A. L. Kataev, “Conformal symmetry limit of QED and QCD and identities between perturbative contributions to deep-inelastic scattering sum rules”, J. High Energy Phys., 2014, no. 2, 092  |
→ |
New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models A. L. Kataev, S. V. Mikhailov TMF, 170:2 (2012), 174–187
|
10. |
S. J. Brodsky, M. Mojaza, X.-G. Wu, “Systematic scale-setting to all orders: the principle of maximum conformality and commensurate scale relations”, Phys. Rev. D, 89:1 (2014), 014027  |
→ |
New perturbation theory representation of the conformal symmetry breaking effects in gauge quantum field theory models A. L. Kataev, S. V. Mikhailov TMF, 170:2 (2012), 174–187
|
|
11. |
J. Bartels, A. Kormilitzin, L. N. Lipatov, “Analytic structure of the $n=7$ scattering amplitude in $\mathcal{N}=4$ SYM theory in the multi-Regge kinematics: conformal Regge pole contribution”, Phys. Rev. D, 89:6 (2014), 065002  |
→ |
Analytic properties of high-energy production amplitudes in $N{=}4$ SUSY L. N. Lipatov TMF, 170:2 (2012), 206–222
|
|
12. |
Reshetnyak A., “On Gauge Independence For Gauge Models With Soft Breaking of Brst Symmetry”, Int. J. Mod. Phys. A, 29:30 (2014), 1450184  |
→ |
The study of ambiguity in non-Abelian gauge theories A. A. Slavnov TMF, 170:2 (2012), 242–247
|
|
13. |
Zhang S., “Shock Wave Evolution and Discontinuity Propagation For Relativistic Superfluid Hydrodynamics With Spontaneous Symmetry Breaking”, Phys. Lett. B, 729 (2014), 136–142  |
→ |
Two-component liquid model for the quark–gluon plasma M. N. Chernodub, H. Verschelde, V. I. Zakharov TMF, 170:2 (2012), 258–264
|
|
14. |
V. B. Jovanovic, D. Borka, P. Jovanovic, J. Milosevic, S. R. Ignjatovic, “Masses of constituent quarks confined in open bottom hadrons”, Mod. Phys. Lett. A, 29:38 (2014), 1450202  |
→ |
Precise charm- and bottom-quark masses: Theoretical and experimental uncertainties K. G. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm TMF, 170:2 (2012), 265–279
|
15. |
C. A. Dominguez, “Analytical determination of the QCD quark masses”, Int. J. Mod. Phys. A, 29:29 (2014), 1430069  |
→ |
Precise charm- and bottom-quark masses: Theoretical and experimental uncertainties K. G. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm TMF, 170:2 (2012), 265–279
|
16. |
A. A. Penin, N. Zerf, “Bottom quark mass from $\varUpsilon$ sum rules to $\mathcal{O}(\alpha_s^3)$”, J. High Energy Phys., 2014, no. 4, 120  |
→ |
Precise charm- and bottom-quark masses: Theoretical and experimental uncertainties K. G. Chetyrkin, J. H. Kühn, A. Maier, P. Maierhöfer, P. Marquard, M. Steinhauser, C. Sturm TMF, 170:2 (2012), 265–279
|
|
17. |
Andrianov A.A., Espriu D., Kurkov M.A., Lizzi F., “Universal Landau Pole At the Planck Scale”, II Russian-Spanish Congress on Particle and Nuclear Physics At All Scales, Astroparticle Physics and Cosmology, AIP Conference Proceedings, 1606, eds. Andrianov A., Espriu D., Andrianov V., Kolevatov S., Amer Inst Physics, 2014, 293–298  |
→ |
M. E. Shaposhnikov TMF, 170:2 (2012), 280–291
|
|
18. |
Korpusov M.O., Yushkov E.V., “Local Solvability and Blow-Up For Benjamin-Bona-Mahony-Burgers, Rosenau-Burgers and Korteweg-de Vries-Benjamin-Bona-Mahony Equations”, Electron. J. Differ. Equ., 2014, 69  |
→ |
Blowup of solutions of the three-dimensional Rosenau–Burgers equation M. O. Korpusov TMF, 170:3 (2012), 342–349
|
|
19. |
P.-L. Ma, Sh.-F. Tian, “On the quasi-periodic wave solutions and asymptotic analysis to a $(3+1)$-dimensional generalized Kadomtsev-Petviashvili equation”, Commun. Theor. Phys., 62:2 (2014), 245–258  |
→ |
Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV–Burgers equation Shou-fu Tian, Hong-qing Zhang TMF, 170:3 (2012), 350–380
|
20. |
Sh.-F. Tian, H.-Q. Zhang, “On the integrability of a generalized variable-coefficient forced Korteweg-de Vries equation in fluids”, Stud. Appl. Math., 132:3 (2014), 212–246  |
→ |
Super Riemann theta function periodic wave solutions and rational characteristics for a supersymmetric KdV–Burgers equation Shou-fu Tian, Hong-qing Zhang TMF, 170:3 (2012), 350–380
|
|
|
Total publications: |
7889 |
Scientific articles: |
7751 |
Authors: |
4600 |
Citations: |
32180 |
Cited articles: |
5439 |
 |
Impact Factor Web of Science |
|
for 2019:
0.854 |
|
for 2018:
0.901 |
|
for 2017:
0.851 |
|
for 2016:
0.984 |
|
for 2015:
0.831 |
|
for 2014:
0.801 |
|
for 2013:
0.700 |
|
for 2012:
0.669 |
|
for 2011:
0.650 |
|
for 2010:
0.748 |
|
for 2009:
0.796 |
|
for 2008:
0.721 |
|
for 2007:
0.622 |
|
for 2006:
0.626 |
|
for 2005:
0.569 |
|
for 2004:
0.651 |
|
for 2003:
0.729 |
 |
Scopus Metrics |
|
2019 |
SJR |
0.299 |
|
2018 |
CiteScore |
0.810 |
|
2018 |
SJR |
0.386 |
|
2017 |
CiteScore |
0.800 |
|
2017 |
SNIP |
0.865 |
|
2017 |
SJR |
0.409 |
|
2016 |
CiteScore |
0.740 |
|
2016 |
SNIP |
0.970 |
|
2016 |
SJR |
0.425 |
|
2015 |
CiteScore |
0.650 |
|
2015 |
SNIP |
0.805 |
|
2015 |
IPP |
0.658 |
|
2015 |
SJR |
0.481 |
|
2014 |
CiteScore |
0.650 |
|
2014 |
SNIP |
0.899 |
|
2014 |
IPP |
0.678 |
|
2014 |
SJR |
0.492 |
|
2013 |
SNIP |
0.800 |
|
2013 |
IPP |
0.573 |
|
2013 |
SJR |
0.494 |
|
2012 |
SNIP |
0.764 |
|
2012 |
IPP |
0.555 |
|
2012 |
SJR |
0.294 |
|