Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Savchenko, Aleksandr Oliverovich

Statistics Math-Net.Ru
Total publications: 14
Scientific articles: 14

Number of views:
This page:256
Abstract pages:4778
Full texts:1550
References:588
E-mail:

http://www.mathnet.ru/eng/person51252
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
2019
1. A. O. Savchenko, A. V. Petukhov, “A method for solving an exterior boundary value problem for the Laplace equation by overlapping domain decomposition”, Sib. Zh. Ind. Mat., 22:3 (2019),  104–113  mathnet  elib; J. Appl. Industr. Math., 13:3 (2019), 519–527  scopus
2018
2. V. M. Sveshnikov, A. O. Savchenko, A. V. Petukhov, “A new non-overlapping domain decomposition method for the 3-D Laplace exterior problem”, Sib. Zh. Vychisl. Mat., 21:4 (2018),  435–449  mathnet  elib; Num. Anal. Appl., 11:4 (2018), 346–358  isi  scopus
2017
3. A. O. Savchenko, “Matrix of moments of the Legendre polynomials and its application to problems of electrostatics”, Zh. Vychisl. Mat. Mat. Fiz., 57:1 (2017),  163–175  mathnet  elib; Comput. Math. Math. Phys., 57:1 (2017), 175–187  isi  scopus
2016
4. A. O. Savchenko, V. P. Il'in, D. S. Butyugin, “A method of solving an exterior three-dimensional boundary value problem for the Laplace equation”, Sib. Zh. Ind. Mat., 19:2 (2016),  88–99  mathnet  mathscinet  elib; J. Appl. Industr. Math., 10:2 (2016), 277–287  scopus
2014
5. A. O. Savchenko, “Functions orthogonal to polynomials and their application in axially symmetric problems in physics”, TMF, 179:2 (2014),  225–241  mathnet  mathscinet  elib; Theoret. and Math. Phys., 179:2 (2014), 574–587  isi  scopus
2013
6. A. O. Savchenko, “Computation of the attractive force of an ellipsoid”, Zh. Vychisl. Mat. Mat. Fiz., 53:12 (2013),  2063–2071  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 53:12 (2013), 1882–1890  isi  elib  scopus
7. A. O. Savchenko, O. Ya. Savchenko, “Осесимметричное проводящее тело в соосном электрическом поле”, Zh. Vychisl. Mat. Mat. Fiz., 53:4 (2013),  675–684  mathnet  elib
2012
8. A. O. Savchenko, “Calculation of the volume potential for ellipsoidal bodies”, Sib. Zh. Ind. Mat., 15:1 (2012),  123–131  mathnet  mathscinet
9. A. O. Savchenko, O. Ya. Savchenko, “Calculation of charges screening an external coaxial electric field on the surface of a conducting axial symmetric body”, Sib. Zh. Vychisl. Mat., 15:3 (2012),  321–327  mathnet  elib; Num. Anal. Appl., 5:3 (2012), 265–270  scopus
10. A. O. Savchenko, O. Ya. Savchenko, “Ellipsoid flowed around by a harmonic vector field”, TMF, 170:3 (2012),  381–392  mathnet  mathscinet  elib; Theoret. and Math. Phys., 170:3 (2012), 315–325  isi  elib  scopus
2011
11. A. O. Savchenko, O. Ya. Savchenko, “Flow around an ellipsoid of revolution in a harmonic coaxial vector field”, Sib. Zh. Ind. Mat., 14:2 (2011),  106–111  mathnet  mathscinet; J. Appl. Industr. Math., 6:2 (2012), 224–228
2007
12. A. O. Savchenko, O. Ya. Savchenko, “Calculation of currents on the surface of a superconducting axially symmetric body screening an external coaxial magnetic field”, Sib. Zh. Vychisl. Mat., 10:3 (2007),  317–324  mathnet
2003
13. A. O. Savchenko, “A high order numerical method for the integral Volterra equations with weak singularity”, Sib. Zh. Vychisl. Mat., 6:2 (2003),  181–195  mathnet  zmath
2001
14. A. O. Savchenko, “The optimal quadratures for numerical solving of integral Volterra equations and the Cauchy problem”, Sib. Zh. Vychisl. Mat., 4:2 (2001),  179–184  mathnet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2021