RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Seregin Grigorii Aleksandrovich

Statistics Math-Net.Ru
Total publications: 56
Scientific articles: 50
Cited articles: 43
Citations in Math-Net.Ru: 502
Presentations: 3

Number of views:
This page:2003
Abstract pages:9710
Full texts:3992
References:636
Professor
Doctor of physico-mathematical sciences
E-mail: ,

http://www.mathnet.ru/eng/person8812
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=293381
http://elibrary.ru/author_items.asp?authorid=3651

Publications in Math-Net.Ru
1. Remark on Wolf's condition for boundary regularity of Navier–Stokes equations
G. Seregin
Zap. Nauchn. Sem. POMI, 444 (2016),  124–132
2. Liouville theorem for 2D Navier–Stokes equations in half space
G. Seregin
Zap. Nauchn. Sem. POMI, 425 (2014),  137–148
3. Rescalings at possible singularities of Navier–Stokes equations in half-space
G. Seregin, V. Šverák
Algebra i Analiz, 25:5 (2013),  146–172
4. A Liouville theorem for the Stokes system in half-space
H. Jia, G. Seregin, V. Sverak
Zap. Nauchn. Sem. POMI, 410 (2013),  25–35
5. Note on bounded scale-invariant quantities for the Navier–Stokes equations
G. Seregin
Zap. Nauchn. Sem. POMI, 397 (2011),  150–156
6. On a bounded shear flow in half-space
G. Seregin, V. Sverak
Zap. Nauchn. Sem. POMI, 385 (2010),  200–205
7. Necessary conditions of potential blow up for Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 385 (2010),  187–199
8. A note on local boundary regularity for the Stokes system
G. A. Seregin
Zap. Nauchn. Sem. POMI, 370 (2009),  151–159
9. On a reverse Hölder inequality for a class of suitable weak solutions to the Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 362 (2008),  325–336
10. Local regularity for suitable weak solutions of the Navier–Stokes equations
G. A. Seregin
Uspekhi Mat. Nauk, 62:3(375) (2007),  149–168
11. Existence of global solutions for a parabolic system related to the nonlinear Stokes problem
M. Fuchs, G. A. Seregin
Zap. Nauchn. Sem. POMI, 348 (2007),  254–271
12. New version of the Ladyzhenskaya–Prodi–Serrin condition
G. A. Seregin
Algebra i Analiz, 18:1 (2006),  124–143
13. Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces
G. A. Seregin
Zap. Nauchn. Sem. POMI, 336 (2006),  199–210
14. A sufficient condition of local regularity for the Navier–Stokes equations
W. Zajączkowski, G. A. Seregin
Zap. Nauchn. Sem. POMI, 336 (2006),  46–54
15. Boundary partial regularity for the Navier–Stokes equations
G. A. Seregin, T. N. Shilkin, V. A. Solonnikov
Zap. Nauchn. Sem. POMI, 310 (2004),  158–190
16. Backward uniqueness for the heat operator in half-space
L. Escauriaza, G. Seregin, V. Šverak
Algebra i Analiz, 15:1 (2003),  201–214
17. $L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness
L. Escauriaza, G. A. Seregin, V. Šverak
Uspekhi Mat. Nauk, 58:2(350) (2003),  3–44
18. On smoothness of suitable weak solutions to the Navier–Stokes equations
G. A. Seregin, V. Šverak
Zap. Nauchn. Sem. POMI, 306 (2003),  186–198
19. Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary
G. A. Seregin
Zap. Nauchn. Sem. POMI, 295 (2003),  168–179
20. Differentiability properties of weak solutions of the Navier–Stokes equations
G. A. Seregin
Algebra i Analiz, 14:1 (2002),  194–237
21. On Backward uniqueness for parabolic equations
L. Escauriaza, G. A. Seregin, V. Šverak
Zap. Nauchn. Sem. POMI, 288 (2002),  100–103
22. Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 271 (2000),  204–223
23. $J_p^1$-quasiconvexity and variational problems on sets of solenoidal vector fields
G. A. Seregin
Algebra i Analiz, 11:2 (1999),  170–217
24. Partial regularity for solutions to the modified Navier–Stokes equations
G. A. Seregin
Zap. Nauchn. Sem. POMI, 259 (1999),  238–253
25. On reqularity of solutions to two-dimensional equations of the dynamics of fluids with nonlinear viscosity
O. A. Ladyzhenskaya, G. A. Seregin
Zap. Nauchn. Sem. POMI, 259 (1999),  145–166
26. A variational problem on the phase equilibrium of an elastic body
G. A. Seregin
Algebra i Analiz, 10:3 (1998),  92–132
27. Smoothness of solutions of equations describing generalized Newtonian flows and estimates for the dimensions of their attractors
O. A. Ladyzhenskaya, G. A. Seregin
Izv. RAN. Ser. Mat., 62:1 (1998),  59–122
28. Flow of two-dimensional generalized Newtonian fluid
G. A. Seregin
Algebra i Analiz, 9:1 (1997),  167–200
29. On attractors for equations describing the flow of generalized Newtonian fluids
G. A. Seregin
Zap. Nauchn. Sem. POMI, 249 (1997),  256–293
30. Regularity for minimaizers of some variational problems in plasticity theory
G. A. Seregin, T. N. Shilkin
Zap. Nauchn. Sem. POMI, 243 (1997),  270–298
31. Two-dimensional variational problems of the theory of plasticity
G. A. Seregin
Izv. RAN. Ser. Mat., 60:1 (1996),  175–210
32. Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory
G. A. Seregin
Zap. Nauchn. Sem. POMI, 233 (1996),  227–232
33. On the regularity of solutions of variational problems in the theory of phase transitions in an elastic body
G. A. Seregin
Algebra i Analiz, 7:6 (1995),  153–187
34. Some remarks on the mollification of piecewise-linear homeomorphisms
G. A. Seregin, T. N. Shilkin
Zap. Nauchn. Sem. POMI, 221 (1995),  235–242
35. Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity
M. Fuchs, G. A. Seregin
Algebra i Analiz, 6:6 (1994),  128–153
36. Some remarks on variational problems for functionals with $L\ln L$ growth
G. A. Seregin
Zap. Nauchn. Sem. POMI, 213 (1994),  164–178
37. Differential properties of the stress tensor in the Coulomb-Mohr theory of plasticity
G. A. Seregin
Algebra i Analiz, 4:6 (1992),  234–252
38. On the regularity of minimizers of some variational problems in the theory of plasticity
G. A. Seregin
Algebra i Analiz, 4:5 (1992),  181–218
39. A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening
G. A. Seregin
Zap. Nauchn. Sem. POMI, 200 (1992),  167–176
40. On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations
O. A. Ladyzhenskaya, G. A. Seregin
Zap. Nauchn. Sem. LOMI, 197 (1992),  87–119
41. On the dynamical system associated with two dimensional equations of the motion of Bingham fluid
G. A. Seregin
Zap. Nauchn. Sem. LOMI, 188 (1991),  128–142
42. On the regularity of weak solutions of variational problems of plasticity theory
G. A. Seregin
Algebra i Analiz, 2:2 (1990),  121–140
43. Differential properties of extremals of variational problems that arise in the theory of plasticity
G. A. Seregin
Differ. Uravn., 26:6 (1990),  1033–1044
44. Differential properties of extremals of variational problems in the mechanics of viscoplastic media
G. A. Seregin
Trudy Mat. Inst. Steklov., 188 (1990),  117–124
45. On the differentiability of extremals of variational problems of the mechanics of ideally elastoplastic media
G. A. Seregin
Differ. Uravn., 23:11 (1987),  1981–1991
46. On the differentiability of local extremals of variational problems of the mechanics of rigidly viscoplastic media
G. A. Serëgin
Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10,  23–30
47. A variational-difference scheme for problems of limit equilibrium
G. A. Seregin
Zh. Vychisl. Mat. Mat. Fiz., 27:1 (1987),  83–92
48. On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory
G. A. Seregin
Mat. Sb. (N.S.), 130(172):3(7) (1986),  291–309
49. Variational-difference schemes for problems of the mechanics of ideally elastoplastic media
G. A. Seregin
Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985),  237–253
50. Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity
G. A. Seregin
Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984),  420–445

51. To Solonnikov's jubilee
I. V. Denisova, K. I. Pileckas, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, E. V. Frolova
Zap. Nauchn. Sem. POMI, 362 (2008),  5–14
52. Olga Aleksandrovna Ladyzhenskaya (obituary)
V. I. Arnol'd, M. Sh. Birman, A. M. Vershik, M. I. Vishik, I. M. Gel'fand, I. A. Ibragimov, V. P. Maslov, S. P. Novikov, G. A. Seregin, Ya. G. Sinai, M. Z. Solomyak, V. A. Solonnikov, N. N. Ural'tseva, L. D. Faddeev
Uspekhi Mat. Nauk, 59:3(357) (2004),  151–152
53. To the 70th anniversary of Nina Nikolaevna Ural'tseva
A. A. Arkhipova, G. A. Seregin
Zap. Nauchn. Sem. POMI, 310 (2004),  7–18
54. Ol'ga Aleksandrovna Ladyzhenskaya (on her 80th birthday)
G. A. Seregin, N. N. Ural'tseva
Uspekhi Mat. Nauk, 58:2(350) (2003),  181–206
55. To Vsevolod Alekseevich Solonnikov on the occasion of his jubilee
I. V. Denisova, O. A. Ladyzhenskaya, G. A. Seregin, N. N. Ural'tseva, E. V. Frolova
Zap. Nauchn. Sem. POMI, 306 (2003),  7–15
56. To the jubillee of O. A. Ladyzhenskaya
A. A. Arkhipova, M. S. Birman, V. S. Buslaev, V. G. Osmolovskii, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, T. N. Shilkin
Zap. Nauchn. Sem. POMI, 288 (2002),  5–13

Presentations in Math-Net.Ru
1. О гладкости решений уравнений Навье-Стокса
G. A. Seregin
International conference "Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics" dedicated to the 150th anniversary of V. A. Steklov
May 17, 2013 11:45   
2. Global wellposedness and local regularity for Navier–Stokes Equations
G. Seregin
Mathematics - XXI century. PDMI 70th anniversary
September 17, 2010 13:30   
3. Mathematical problems of dynamics of generalized Newtonial fluids
G. A. Seregin
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
April 21, 1997

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017