RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Sidorov, Nikolay Aleksandrovich

Total publications: 127 (123)
in MathSciNet: 102 (102)
in zbMATH: 60 (60)
in Web of Science: 30 (30)
in Scopus: 9 (9)
Cited articles: 73
Citations in Math-Net.Ru: 200
Citations in Web of Science: 75
Citations in Scopus: 19

Number of views:
This page:2921
Abstract pages:9695
Full texts:3472
References:766
Professor
Doctor of physico-mathematical sciences (1983)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 30.04.1940
E-mail: ,
Website: http://www.isu.runnet.ru
Keywords: branching theory of nonlinear equations; bifurcation; singular problems; rgularization; approximate methods; differential-operator equations; kinetic systems

Subject:

Principal investigation concerns the theory of branching solutions of nonlinear equations. The general existence theorems for bifurcation points, curves and surfaces are proved by consideration of the branching equation reduced to the canonical form with the use of combinations of analytical, topological and algebraic methods. The proof method for these theorems intensively uses the Jordan structure of a linearized problem, as well as application of the Kronecker - Poincare Index, the Morse - Conley Index and search of conditional extremum points of the definite functions corresponding to the branching equation. The method is also aplicable in the case of a vector parameter when the bifurcation points of a solution can fill in curves or surfaces. It makes it possible to construct an asymptotics of appropriate solution branches and consider their stability. The general theory is used for a problem of branching solutions of nonlinear elliptic equations classes and applications (e.g. the existence theorems are proved and the asymptotics of solutions of the Karman boundary value problem for systems with a biharmonic operator is constructed, the solutions of integral compensation equation of the theory of superconductivity are constructed, the bifurcation analysis of some problems for kinetic Vlasov-Maxwell systems which describe a behaviour of multicomponent plasma is realized.) The analysis of generating of free parameters in branching solutions of general classes of the nonlinear equations in Banach spaces is carried out on the base of the interlaced branching equations theory, constructed for this purpose. The backgrounds of the theory of iterative methods in a neighborhood of solution branch points of the nonlinear equations in Banach spaces are developed: the method of sequence of successive approximations with an explicit and implicit parametrization of branches, including most general N-stepped iterative method with the explicit indication of uniformization of branching solutions and construction of an initial approximation are offered; the methods of a regularization of calculations in a neighborhood of solution branch points ensuring uniform approximation of branching solutions are given. The basic results in the theory of differential - operator equations (ordinary and in partial derivatives) in Banach spaces with an irreversible operator in the main part are obtained: the existence theorems in linear and nonlinear cases are proved; the methods of reduction of this problem to the ordinary differential equations of the infinite order, to "scalar" integral equations, to the differential equations with a singular point are offered; the method of construction of classic and generalized solutions on the base of a Jordan structure of operator coefficients of a linearized equation is developed. More than 100 articles were published and reviewed (see some abstracts of these articles in Mathematical Review : 87a:58036; 98f:47069; 98d:35221; 96k:65042; 95c:47079; 93m:82047; 93a:47054; 92i:47077; 90m:58033; 89i:45018; 85j:34139; 85b:34072; 82a:47011 etc.)

Biography

Graduated from Faculty of Physics and Mathematics Irkutsk State University (ISU) in 1962. Ph.D. thesis was defended in 1967. D.Sci. thesis was defended in 1983. A list of my works contains more than 100 titles.

In 1999 was awarded the sign " Honorable member of Higher Professional Education in Russia". Academician of Academy Sciences of Nonlinear Sciences -1998, Member-Correspondent of Academy Sciences of Higher School of Russia-1999.

   
Main publications:
  • Sidorov N. A. Yavnaya i neyavnaya parametrizatsiya pri postroenii razvetvlyayuschikhsya reshenii iteratsionnymi metodami // Matem. sb., 1995, 186(2), 129–140.
  • Sidorov N. A. N-stupenchatyi iteratsionnyi metod v teorii vetvleniya reshenii nelineinykh uravnenii // Sib. matem. zhurn., 1997, 38(2), 383–395.
  • Sidorov N. A., Sinitsyn A.V. Analiz tochek bifurkatsii i netrivialnykh vetvei reshenii statsionarnoi sistemy Vlasova–Maksvella // Matem. zametki, 1997, 62(2), 268–292.
  • Sidorov N. A., Abdullin V. R. Spletaemye uravneniya razvetvleniya v teorii nelineinykh uravnenii // Matem. sb., 2001, 192(7), 107–124.
  • Sidorov N. A. Parametrizatsiya prostykh razvetvlyayuschikhsya reshenii polnogo ranga i iteratsii v nelineinom analize // Izvestiya Vuzov, ser. matem., 2001, 9, 59–65.

http://www.mathnet.ru/eng/person11024
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:sidorov.nikolai-aleksandrovich
https://mathscinet.ams.org/mathscinet/MRAuthorID/195498

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2019
1. N. A. Sidorov, “Classic solutions of boundary value problems for partial differential equations with operator of finite index in the main part of equation”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 27 (2019), 55–70  mathnet  crossref  isi

   2018
2. N. A. Sidorov, D. N. Sidorov, Yong Li, “Areas of attraction of equilibrium points of nonlinear systems: stability, branching and blow-up of solutions”, IIGU Ser. Matematika, 23 (2018), 46–63  mathnet  crossref  isi
3. Aliona I. Dreglea, Nikolay A. Sidorov, “Integral equations in identification of external force and heat source density dynamics”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2018, no. 3, 68–77  mathnet
4. N. A. Sidorov, O. A. Romanova, M. V. Falaleev, D. N. Sidorov, V. K. Gorbunov, A. I. Dreglea, “In the memory of professor Boris Vladimirovich Loginov”, IIGU Ser. Matematika, 23 (2018), 96–99  mathnet

   2017
5. A. I. Dreglea, N. A. Sidorov, “The identification of external force dynamics in the modeling of vibration”, IIGU Ser. Matematika, 19 (2017), 105–112  mathnet  crossref  isi
6. D. N. Sidorov, N. A. Sidorov, “Solution of irregular systems of partial differential equations using skeleton decomposition of linear operators”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 10:2 (2017), 63–73  mathnet (cited: 2)  crossref  isi (cited: 3)  elib
7. N. A. Sidorov, D. N. Sidorov, “Skeleton decomposition of linear operators in the theory of nonregular systems of partial differential equations”, IIGU Ser. Matematika, 20 (2017), 75–95  mathnet  crossref  isi

   2016
8. Leonardo Rendón, Alexandre V. Sinitsyn, Nikolai A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov-Maxwell system”, Rev. Colombiana Mat., 50:1 (2016), 85–107  crossref  mathscinet  scopus (cited: 1)
9. I. R. Muftahov, D. N. Sidorov, N. A. Sidorov, “Lavrentiev regularization of integral equations of the first kind in the space of continuous functions”, IIGU Ser. Matematika, 15 (2016), 62–77  mathnet

   2015
10. N. A. Sidorov, D. N. Sidorov, I. R. Muftahov, “Perturbation theory and the Banach–Steinhaus theorem for regularization of the linear equations of the first kind”, IIGU Ser. Matematika, 14 (2015), 82–99  mathnet
11. O. A. Romanova, N. A. Sidorov, “On the construction of the trajectory of a dynamical system with initial data on the hyperplanes”, IIGU Ser. Matematika, 12 (2015), 93–105  mathnet
12. I. R. Muftahov, D. N. Sidorov, N. A. Sidorov, “On perturbation method for the first kind equations: regularization and application”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 8:2 (2015), 69–80  mathnet  crossref  isi (cited: 1)  elib
13. N. A. Sidorov, “The chronicle of the Irkutsk regional branch of research-methodological Council on mathematics of the Ministry of Education and Science of the Russian Federation”, IIGU Ser. Matematika, 11 (2015), 106–107  mathnet

   2014
14. N. A. Sidorov, D. N. Sidorov, “On the Solvability of a Class of Volterra Operator Equations of the First Kind with Piecewise Continuous Kernels”, Math. Notes, 96:5 (2014), 811–826  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 4)  elib  elib  scopus (cited: 5)

   2013
15. N. A. Sidorov, “Bifurcation points of nonlinear operators: existence theorems, asymptotics and application to the Vlasov–Maxwell system”, Izv. Irkutskogo gos. un-ta. Ser. Matematika, 6:4 (2013), 85–106  mathnet
16. N. A. Sidorov, M. V. Falaleev, “In the memory of Trenogin Vladilen Aleksandrovich”, IIGU Ser. Matematika, 6:4 (2013), 138–140  mathnet

   2012
17. N. A. Sidorov, R. Yu. Leontiev, A. I. Dreglea, “On Small Solutions of Nonlinear Equations with Vector Parameter in Sectorial Neighborhoods”, Math. Notes, 91:1 (2012), 90–104  mathnet  crossref  crossref  mathscinet  isi (cited: 2)  elib  elib  scopus (cited: 3)
18. N. A. Sidorov, D. N. Sidorov, R. Yu. Leont'ev, “Successive approximations to solutions of nonlinear equations with vector parameter in the irregular case”, J. Appl. Industr. Math., 6:3 (2012), 387–392  mathnet  crossref  mathscinet
19. Denis N. Sidorov, Nikolai A. Sidorov, “Convex majorants method in the theory of nonlinear Volterra equations”, Banach J. Math. Anal., 6:1 (2012), 1–10  crossref  mathscinet  zmath  isi (cited: 8)
20. N. A. Sidorov, D. N. Sidorov, “On successive approximations of solutions of a singular Cauchy problem”, Trudy Inst. Mat. i Mekh. UrO RAN, 18, no. 2, 2012, 238–244  mathnet  elib
21. N. A. Sidorov, M. V. Falaleev, “Continuous and generalized solutions of singular integro-differential equations in Banach spaces”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 11, 62–74  mathnet

   2011
22. N. A. Sidorov, D. N. Sidorov, “Small solutions of nonlinear differential equations near branching points”, Russian Math. (Iz. VUZ), 55:5 (2011), 43–50  mathnet  crossref  mathscinet  scopus (cited: 2)
23. D. N. Sidorov, N. A. Sidorov, “Generalized solutions in the problem of dynamical systems modeling by Volterra polynomials”, Autom. Remote Control, 72:6 (2011), 1258–1263  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus (cited: 1)
24. R. Y. Leontyev, N. A. Sidorov, “An uniformization and successive approximation of solutions of nonlinear equations with vector parameter”, IIGU Ser. Matematika, 4:3 (2011), 116–123  mathnet
25. D. N. Sidorov, N. A. Sidorov, “Method of monotone majorants of the theory of nonlinear Volterra equations”, IIGU Ser. Matematika, 4:1 (2011), 97–108  mathnet
26. N. A. Sidorov, M. V. Falaleev, O. A. Romanova, “Vladilen Aleksandrovich Trenogin”, IIGU Ser. Matematika, 4:3 (2011), 171–172  mathnet

   2010
27. N. A. Sidorov, D. N. Sidorov, A. V. Krasnik, “On the solution of Volterra operator-integral equations in an irregular case by the method of successive approximations”, Differ. Uravn., 46:6 (2010), 874–882  crossref  mathscinet  zmath  isi (cited: 5)
28. N. A. Sidorov, D. N. Sidorov, “Solving the Hammerstein integral equation in the irregular case by successive approximations”, Siberian Math. J., 51:2 (2010), 325–329  mathnet  crossref  mathscinet  isi (cited: 3)  elib  elib  scopus (cited: 4)
29. N. A. Sidorov, A. V. Trufanov, “Nonlinear operator equations with functionaly modified argument”, IIGU Ser. Matematika, 3:4 (2010), 96–113  mathnet
30. N. A. Sidorov, D. N. Sidorov, “Branching solutions of nonlinear differential equations of $n$-th order”, IIGU Ser. Matematika, 3:1 (2010), 92–103  mathnet
31. N. A. Sidorov, R. Yu. Leont'ev, “On solutions with the maximal order of vanishing of nonlinear equations with a vector parameter in sectorial neighborhoods”, Trudy Inst. Mat. i Mekh. UrO RAN, 16, no. 2, 2010, 226–237  mathnet  elib

   2009
32. N. A. Sidorov, A. V. Trufanov, “Nonlinear operator equations with functional perturbation of an argument of neutral type”, Differ. Uravn., 45:12 (2009), 1804–1808  crossref  mathscinet  zmath  isi (cited: 4)
33. N. A. Sidorov, D. N. Sidorov, “Generalized solutions to integral equations in the problem of identification of nonlinear dynamic models”, Autom. Remote Control, 70:4 (2009), 598–604  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib  elib  scopus (cited: 2)

   2006
34. N. A. Sidorov, A. V. Trufanov, D. N. Sidorov, “Generalized solutions of nonlinear integral-functional equations”, Nelineĭn. Granichnye Zadachi, 16 (2006), 96–106  mathscinet  zmath
35. N. A. Sidorov, D. N. Sidorov, “Existence and construction of generalized solutions of nonlinear Volterra integral equations of the first kind”, Differ. Equ., 42:9 (2006), 1312–1316  mathnet  crossref  mathscinet  elib
36. Nikolai A. Sidorov, Michail V. Falaleev, Denis N. Sidorov, “Generalized solutions of Volterra integral equations of the first kind”, Bull. Malays. Math. Sci. Soc. (2), 29:2 (2006), 101–109  mathscinet  zmath

   2005
37. M. V. Falaleev, N. A. Sidorov, D. N. Sidorov, “Generalized solutions of Volterra integral equations of the first kind”, Lobachevskii J. Math., 20 (2005), 47–57  mathnet  mathscinet  zmath
38. M. V. Falaleev, N. A. Sidorov, “Continuous and generalized solutions of singular partial differential equations”, Lobachevskii J. Math., 20 (2005), 31–45  mathnet (cited: 1)  mathscinet  zmath  elib

   2003
39. N. A. Sidorov, A. V. Sinitsyn, “The stationary Vlasov-Maxwell system in bounded domains”, Nonlinear analysis and nonlinear differential equations (Russian), FizMatLit, Moscow, 2003, 50–88  mathscinet  zmath
40. N. A. Sidorov, V. A. Trenogin, “Bifurcation points of solutions of nonlinear equations”, Nonlinear analysis and nonlinear differential equations (Russian), FizMatLit, Moscow, 2003, 5–49  mathscinet  zmath
41. Michael V. Falaleev, Olga A. Romanova, Nicholas A. Sidorov, “Generalized Jordan sets in the theory of singular partial differential-operator equations”, Computational Science—{Iccs} 2003. Part II, Lecture Notes in Comput. Sci., 2658, Springer, Berlin, 2003, 523–532  crossref  mathscinet  zmath

   2002
42. Nikolay Sidorov, Boris Loginov, Aleksandr Sinitsyn, Michail Falaleev, Lyapunov-Schmidt methods in nonlinear analysis and applications, Mathematics and its Applications, 550, Kluwer Academic Publishers, Dordrecht, 2002  crossref  mathscinet
43. N. A. Sidorov, V. R. Abdullin, “Intertwined branching equations in the theory of nonlinear equations”, Sobolev-type equations (Russian), Chelyab. Gos. Univ., Chelyabinsk, 2002, 83–115  mathscinet

   2001
44. N. A. Sidorov, “Parametrization of simple branching solutions of full rank and iterations in nonlinear analysis”, Russian Math. (Iz. VUZ), 45:9 (2001), 55–61  mathnet  mathscinet  zmath  elib
45. N. A. Sidorov, V. R. Abdullin, “Interlaced branching equations in the theory of non-linear equations”, Sb. Math., 192:7 (2001), 1035–1052  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus
46. V. R. Abdullin, N. A. Sidorov, “Interlaced equations in branching theory”, Dokl. Akad. Nauk, 377:3 (2001), 295–297  mathnet  mathscinet  zmath

   2000
47. B. V. Loginov, D. G. Rakhimov, N. A. Sidorov, “Development of M. K. Gavurin's pseudoperturbation method”, Operator theory and its applications (Winnipeg, MB, 1998), Fields Inst. Commun., 25, Amer. Math. Soc., Providence, RI, 2000, 367–381  mathscinet  zmath

   1999
48. N. A. Sidorov, V. R. Abdullin, “Interlaced branching equations and invariance in the theory of nonlinear equations”, Symmetry and perturbation theory (Rome, 1998), World Sci. Publ., River Edge, NJ, 1999, 309–313  mathscinet  zmath
49. N. A. Sidorov, “The initial-value problem for differential equations with a Fredholm operator in the principal part”, Vestnik Chelyabinsk. Univ. Ser. 3 Mat. Mekh., 1999, no. 2(5), 103–112  mathscinet
50. N. A. Sidorov, A. V. Sinitsyn, “Index theory in the bifurcation problem of solutions of the Vlasov–Maxwell system”, Matem. Mod., 11:9 (1999), 83–100  mathnet  mathscinet  zmath
51. N. A. Sidorov, A. V. Sinitsyn, “On bifurcation points of the stationary Vlasov-Maxwell system with bifurcation direction”, Progress in Industrial Mathematics At {Ecmi} 98 (Gothenburg), European Consort. Math. Indust., Teubner, Stuttgart, 1999, 295–302  mathscinet
52. N. A. Sidorov, Vestnik Chelyabinsk. Gos. Univ., 1999, no. 5, 103–112  mathnet

   1998
53. A. M. Vershik, N. A. Sidorov, “Bijective coding of automorphisms of the torus and binary quadratic forms”, Russian Math. Surveys, 53:5 (1998), 1106–1107  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  scopus (cited: 1)

   1997
54. N. A. Sidorov, “Implicit parametrization of solutions of the bifurcation equation”, Boundary value problems (Russian), Irkutsk. Gos. Univ., Irkutsk, 1997, 176–186, 207  mathscinet
55. N. A. Sidorov, A. V. Sinitsyn, “Analysis of bifurcation points and nontrivial branches of solutions to the stationary Vlasov–Maxwell system”, Math. Notes, 62:2 (1997), 223–243  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib
56. N. A. Sidorov, “An $N$-step iterative method in the theory of the branching of solutions of nonlinear equations”, Siberian Math. J., 38:2 (1997), 330–341  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
57. B. V. Loginov, N. A. Sidorov, Yu. B. Rusak, Matem. Mod., 9:10 (1997), 30–31  mathnet  zmath

   1999
58. N. A. Sidorov, “Sum-of-digits function for certain non-stationary bases”, J. Math. Sci. (New York), 96:5 (1999), 3609–3615  mathnet  crossref  mathscinet  zmath

   1996
59. N. A. Sidorov, A. V. Sinitsyn, “Nontrivial solutions and bifurcation points of the Vlasov-Maxwell system”, Dokl. Akad. Nauk, 349:1 (1996), 26–28  mathnet (cited: 2)  mathscinet  zmath
60. N. A. Sidorov, A. V. Sinitsyn, “On the branching of solutions of the Vlasov–Maxwell system”, Siberian Math. J., 37:6 (1996), 1199–1211  mathnet  crossref  mathscinet  zmath  isi (cited: 2)

   1995
61. N. A. Sidorov, “Explicit and implicit parametrizations in the construction of branching solutions by iterative methods”, Sb. Math., 186:2 (1995), 297–310  mathnet  crossref  mathscinet  zmath  isi (cited: 4)

   1997
62. N. A. Sidorov, “Singularity and absolute continuity of measures associated with the rotation of a circle”, J. Math. Sci. (New York), 87:6 (1997), 4187–4195  mathnet  crossref  mathscinet  zmath
63. N. A. Sidorov, “Laws of large numbers and the central limit theorem for sequences of coefficients of rotational expansions”, J. Math. Sci. (New York), 87:6 (1997), 4180–4186  mathnet  crossref  mathscinet  zmath

   1994
64. N. A. Sidorov, “Explicit parametrization of the solutions of nonlinear equations in a neighborhood of a branching point”, Dokl. Akad. Nauk, 336:5 (1994), 592–594  mathnet  mathscinet  zmath
65. N. A. Sidorov, O. A. Romanova, E. B. Blagodatskaya, “Partial differential equations with an operator of finite index at the principal part”, Differ. Equ., 30:4 (1994), 676–678  mathnet  zmath
66. A. M. Vershik, N. A. Sidorov, “Arithmetic expansions associated with the rotation of a circle and continued fractions”, St. Petersburg Math. J., 5:6 (1994), 1121–1136  mathnet  mathscinet  zmath

   1992
67. N. A. Sidorov, O. A. Romanova, E. B. Blagodatskaya, “Differential equations with an operator of finite index in the main part”, Approximate methods for solving operator equations (Russian), Irkutsk. Gos. Ped. Inst., Irkutsk, 1992, 75–79  mathscinet
68. N. A. Sidorov, D. A. Tolstonogov, “Asymptotics and iterations in a neighborhood of the branching points of the solution of nonlinear equations”, Numerical methods in optimization and analysis (Russian) (Irkutsk, 1989), “Nauka” Sibirsk. Otdel., Novosibirsk, 1992, 162–171  mathscinet  zmath
69. V. A. Trenogin, N. A. Sidorov, “Potentiality conditions for a branching equation and bifurcation points of nonlinear operators”, Uzbek. Mat. Zh., 1992, no. 2, 40–49  mathscinet
70. Y. Markov, G. Rudykh, N. Sidorov, A. Sinitsyn, D. Tolstonogov, “Steady-state solutions of the Vlasov-Maxwell system and their stability”, Acta Appl. Math., 28:3 (1992), 253–293  crossref  mathscinet  zmath  isi (cited: 10)

   1991
71. N. A. Sidorov, E. B. Blagodatskaya, “Differential equations with a Fredholm operator in the main differential expression”, Dokl. Akad. Nauk Sssr, 319:5 (1991), 1087–1090  mathnet (cited: 3)  mathscinet  zmath  isi (cited: 4)

   1992
72. B. V. Loginov, N. A. Sidorov, “Group symmetry of the Lyapunov–Schmidt branching equation and iterative methods in the problem of a bifurcation point”, Math. USSR-Sb., 73:1 (1992), 67–77  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)

   1990
73. Yu. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitzin, “Some families of solutions of the Vlasov-Maxwell system and their stability”, The Lyapunov functions method and applications, Imacs Ann. Comput. Appl. Math., 8, Baltzer, Basel, 1990, 197–203  mathscinet
74. Yu. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Some families of solutions of the Vlasov–Maxwell system and their stability”, Matem. Mod., 2:12 (1990), 88–101  mathnet  mathscinet  zmath
75. V. A. Trenogin, N. A. Sidorov, B. V. Loginov, “Potentiality, group symmetry and bifurcation in the theory of branching equation”, Differential Integral Equations, 3:1 (1990), 145–154  mathscinet  zmath

   1989
76. V. A. Trenogin, N. A. Sidorov, B. V. Loginov, “The bifurcation equation: potentiality, bifurcation, symmetry”, Dokl. Akad. Nauk Sssr, 309:2 (1989), 286–289  mathnet (cited: 3)  mathscinet  isi (cited: 2)
77. Yu. A. Markov, G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Existence of stationary solutions of Vlasov–Maxwell equations and some of their exact solutions”, Matem. Mod., 1:6 (1989), 95–107  mathnet  mathscinet  zmath
78. G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Nonstationary solutions of the two-particle Vlasov-Maxwell system”, Dokl. Akad. Nauk Sssr, 307:6 (1989), 1354–1357  mathnet  mathscinet  isi (cited: 3)
79. G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Bifurcating stationary solutions of a two-particle Vlasov-Maxwell system”, Dokl. Akad. Nauk Sssr, 304:5 (1989), 1109–1112  mathnet (cited: 2)  mathscinet  isi (cited: 1)

   1988
80. G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Some exact solutions of a stationary system of Vlasov-Maxwell equations”, Problems in the qualitative theory of differential equations (Russian) (Irkutsk, 1986), “Nauka” Sibirsk. Otdel., Novosibirsk, 1988, 118–128, 283  mathscinet
81. G. A. Rudykh, N. A. Sidorov, A. V. Sinitsyn, “Stationary solutions of a system of Vlasov-Maxwell equations”, Dokl. Akad. Nauk Sssr, 302:3 (1988), 594–597  mathnet (cited: 2)  mathscinet  isi

   1987
82. N. A. Sidorov, M. V. Falaleev, “Generalized solutions of degenerate differential and integral equations in Banach spaces”, The method of Lyapunov functions in the analysis of the dynamics of systems (Irkutsk, 1985) (Russian), “Nauka” Sibirsk. Otdel., Novosibirsk, 1987, 308–318, 328  mathscinet
83. V. A. Trenogin, B. V. Doginov, N. A. Sidorov, Proceedings of the Eleventh International Conference on Nonlinear Oscillations (Budapest, 1987), János Bolyai Math. Soc., Budapest, 1987, 502–505  mathscinet
84. N. A. Sidorov, M. V. Falaleev, “Generalized solution of differential equations with a Fredholm operator at the derivative”, Differ. Uravn., 23:4 (1987), 726–728  mathnet  zmath

   1985
85. B. V. Loginov, N. A. Sidorov, “A general method for the construction of the Lyapunov-Schmidt bifurcation equation, and some methods for its investigation”, Nonclassical problems of mathematical physics (Russian), “Fan”, Tashkent, 1985, 113–145, 232  mathscinet

   1984
86. N. A. Sidorov, “Lyapunov's methods in the theory of differential equations with a Volterra operator multiplying the derivative”, The method of Lyapunov functions and its applications, “Nauka” Sibirsk. Otdel., Novosibirsk, 1984, 241–251  mathscinet
87. N. A. Sidorov, “A class of degenerate differential equations with convergence”, Math. Notes, 35:4 (1984), 300–305  mathnet  crossref  mathscinet  zmath  isi (cited: 5)
88. N. A. Sidorov, “Differential equations with a Volterra operator multiplying the derivative”, Soviet Math. (Iz. VUZ), 28:1 (1984), 95–104  mathnet  mathscinet  zmath

   1983
89. B. V. Loginov, N. A. Sidorov, “Methods for the construction and use of the Lyapunov-Schmidt branching equation in the non-Fredholm case”, Theory and methods for solving ill-posed problems and their applications (Samarkand, 1983), Novosibirsk. Gos. Univ., Novosibirsk, 1983, 256–259  mathscinet
90. N. A. Sidorov, O. A. Romanova, “Application of certain results of branching theory in the solution of degenerate differential equations”, Differ. Uravn., 19:9 (1983), 1516–1526  mathnet  mathscinet

   1982
91. N. A. Sidorov, \cyr Obshchie voprosy regulyarizatsii v zadachakh teorii vetvleniya, Irkutsk. Gos. Univ., Irkutsk, 1982  mathscinet  zmath
92. N. A. Sidorov, “Solution of integro-differential equations with noninvertible operator multiplying the derivative”, Approximate methods for solving operator equations and their applications, Akad. Nauk Sssr Sibirsk. Otdel., Ènerget. Inst., Irkutsk, 1982, 121–130  mathscinet
93. O. A. Romanova, N. A. Sidorov, “The role of Schmidt's lemma and pseudoinverse operators in the theory of differential equations with degeneration”, Analytic methods in the theory of elliptic equations, “Nauka” Sibirsk. Otdel., Novosibirsk, 1982, 82–88  mathscinet

   1981
94. N. A. Sidorov, O. A. Romanova, “Theorems on the existence of solutions for differential equations with degeneration and discontinuous right-hand side”, Discrete and distributed systems, Irkutsk. Gos. Univ., Irkutsk, 1981, 78–89, 223  mathscinet  zmath
95. N. A. Sidorov, “Branching of solutions of nonlinear equations with a potential branching equation”, Dokl. Akad. Nauk Sssr, 256:6 (1981), 1322–1326  mathnet  mathscinet  mathscinet  zmath  isi

   1980
96. N. A. Sidorov, V. A. Trenogin, “Regularization of linear controls on the basis of perturbation theory”, Differ. Uravn., 16:11 (1980), 2039–2049  mathnet  mathscinet  zmath

   1979
97. N. A. Sidorov, “Regularization of an inverse boundary value problem”, Application of the methods of functional analysis to problems of mathematical physics and numerical analysis (Russian), Akad. Nauk Sssr Sibirsk. Otdel., Inst. Mat., Novosibirsk, 1979, 123–128  mathscinet

   1978
98. N. A. Sidorov, “The calculation of eigenvalues and -vectors of linear operators on the basis of the theory of perturbations”, Differ. Uravn., 14:8 (1978), 1522–1525  mathnet  mathscinet  zmath
99. V. A. Trenogin, N. A. Sidorov, “Regularization of simple solutions of nonlinear equations in the neighborhood of a bifurcation point”, Sibirsk. Mat. Ž., 19:1 (1978), 180–185, 239  mathscinet  zmath
100. N. A. Sidorov, “Regularization of linear differential equations with constant operators in the degenerate case”, Differ. Uravn., 14:3 (1978), 556–560  mathnet  mathscinet  zmath

   1977
101. N. A. Sidorov, “Integral systems of branching of degenerate differential equations”, Questions in applied mathematics (Russian), Sibirsk. Ènerget. Inst., Akad. Nauk Sssr Sibirsk. Otdel., Irkutsk, 1977, 177–179  mathscinet
102. N. A. Sidorov, “The method of continuation with respect to the parameter in the neighborhood of a branch point”, Questions in applied mathematics (Russian), Sibirsk. Ènerget. Inst., Akad. Nauk Sssr Sibirsk. Otdel., Irkutsk, 1977, 109–113  mathscinet
103. N. A. Sidorov, “Two-step regularization of the computation of the solutions of nonlinear equations in the neighborhood of a bifurcation point”, Partial differential equations and their applications (Russian), Izdat. “Fan” Uzbek. SSR, Tashkent, 1977, 120–129, 183  mathscinet
104. B. V. Loginov, N. A. Sidorov, “Calculation of the eigenvalues and eigenelements of linear operators by the method of false perturbations”, Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk, 1977, no. 5, 26–29, 102  mathscinet  zmath
105. V. A. Trenogin, N. A. Sidorov, “Regularisation of computation of branching solutions of nonlinear equations”, Singular perturbations and boundary layer theory (Proc. Conf., École Centrale, Lyon, 1976), Springer, Berlin, 1977, 491–505. Lecture Notes in Math., Vol. 594  crossref  mathscinet

   1976
106. N. A. Sidorov, “A study of the continuous solutions of the Cauchy problem in the neighborhood of a branch point”, Soviet Math. (Iz. VUZ), 20:9 (1976), 77–87  mathnet  mathscinet  zmath
107. B. V. Loginov, N. A. Sidorov, “Calculation of eigenvalues and eigenvectors of bounded operators by the false-perturbation method”, Math. Notes, 19:1 (1976), 62–64  mathnet  crossref  mathscinet  zmath
108. N. A. Sidorov, V. A. Trenogin, “A certain approach to the problem of regularization on the basis of the perturbation of linear operators”, Math. Notes, 20:5 (1976), 976–979  mathnet  crossref  mathscinet  zmath
109. N. A. Sidorov, “The optimal choice of initial approximations to solutions of regularized equations in the theory of branching”, Math. Notes, 20:2 (1976), 710–713  mathnet  crossref  mathscinet  zmath
110. V. A. Trenogin, N. A. Sidorov, “Tihonov regularization of the problem of bifurcation points of nonlinear operators”, Sibirsk. Mat. Ž., 17:2 (1976), 402–413, 480  mathscinet  zmath
111. N. A. Sidorov, V. A. Trenogin, “Regularization of the computation of the real solutions of nonlinear equations in the neighborhood of a branch point”, Dokl. Akad. Nauk Sssr, 228:5 (1976), 1049–1052  mathnet  mathscinet  zmath  isi (cited: 3)

   1975
112. N. A. Sidorov, V. A. Trenogin, “Regularization in the sense of A. N. Tihonov of some problems in bifurcation theory”, Differential and integral equations, No. 3 (Russian), Irkutsk. Gos. Univ., Irkutsk, 1975, 183–193, 302  mathscinet
113. N. A. Sidorov, “Investigation of linear differential equations with constant operators in the degenerate case”, Differential and integral equations, No. 3 (Russian), Irkutsk. Gos. Univ., Irkutsk, 1975, 178–182, 302  mathscinet

   1973
114. N. A. Sidorov, “Variational methods in the theory of the bifurcation points of nonlinear operators”, Differential and integral equations, No. 2 (Russian), Irkutsk. Gos. Univ., Irkutsk, 1973, 255–270, 315–316  mathscinet
115. N. A. Sidorov, “The branching of the solutions of differential equations with a degeneracy”, Differ. Uravn., 9:8 (1973), 1464–1481  mathnet  mathscinet  zmath

   1972
116. V. A. Trenogin, N. A. Sidorov, “An investigation of the bifurcation points and nontrivial branches of the solutions of nonlinear equations”, Differential and integral equations, No. 1 (Russian), Irkutsk. Gos. Univ., Irkutsk, 1972, 216–247  mathscinet
117. N. A. Sidorov, “The Cauchy problem for a certain class of differential equations”, Differ. Uravn., 8:8 (1972), 1521–1524  mathnet  mathscinet  zmath

   1969
118. N. A. Sidorov, L. V. Zorik, “The investigation of a certain integral equation with deviating argument”, Trudy Irkutsk. Gos. Univ., 64 (1969), 36–41  mathscinet

   1968
119. N. A. Sidorov, “The singular solutions of a certain class of integro-partial differential equations”, Trudy Irkutsk. Gos. Univ., 26 (1968), 36–45  mathscinet
120. N. A. Sidorov, “The branch points and singular solutions of certain classes of integral and integro-differential equations with two parameters”, Trudy Irkutsk. Gos. Univ., 26 (1968), 66–73  mathscinet
121. N. A. Sidorov, “Solution of the Cauchy problem for a certain class of integro-differential equations with analytic nonlinearities”, Differ. Uravn., 4:7 (1968), 1309–1316  mathnet  mathscinet  zmath

   1967
122. N. A. Sidorov, “A solution of a certain class of nonlinear integro-partial differential equations”, Proc. Sixth Interuniv. Sci. Conf. of the Far East on Physics and Mathematics, Vol. 3: Differential and Integral Equations (Russian), Habarovsk. Gos. Ped. Inst., Khabarovsk, 1967, 174–179  mathscinet
123. N. A. Sidorov, “The branching of the solutions of certain classes of integro-differential equations”, Proc. Sixth Interuniv. Sci. Conf. of the Far East on Physics and Mathematics, Vol. 3: Differential and Integral Equations (Russian), Habarovsk. Gos. Ped. Inst., Khabarovsk, 1967, 167–173  mathscinet
124. N. A. Sidorov, “Branching of solutions of the Cauchy problem for a class of nonlinear integro-differential equations”, Differ. Uravn., 3:9 (1967), 1592–1601  mathnet  mathscinet  zmath

   1966
125. N. A. Sidorov, “Application of a Newton diagram to the determination of singular solutions of integro-differential equations”, Communications of Works of the Irkutsk State Univ. Comput. Center, No. I (Russian), Irkutsk. Gos. Univ. Vyčisl. Centr, Irkutsk, 1966, 276–277  mathscinet
126. N. A. Sidorov, “The singular solutions of certain classes of integro-differential equations”, Communications of Works of the Irkutsk State Univ. Comput. Center, No. I (Russian), Irkutsk. Gos. Univ. Vyčisl. Centr, Irkutsk, 1966, 72–77  mathscinet
127. N. A. Sidorov, “The branching of the solutions of the Cauchy problem for a certain class of nonlinear integro-differential equations”, Communications of Works of the Irkutsk State Univ. Comput. Center, No. I (Russian), Irkutsk. Gos. Univ. Vyčisl. Centr, Irkutsk, 1966, 27–46  mathscinet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019