RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Pereskokov, Alexandr Vadimovich

Statistics Math-Net.Ru
Total publications: 19
Scientific articles: 19
Presentations: 1

Number of views:
This page:759
Abstract pages:4322
Full texts:1150
References:605
E-mail:

http://www.mathnet.ru/eng/person11245
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/219146

Publications in Math-Net.Ru
2019
1. D. A. Vakhrameeva, A. V. Pereskokov, “Asymptotics of the spectrum of a two-dimensional Hartree-type operator with a Coulomb self-action potential near the lower boundaries of spectral clusters”, TMF, 199:3 (2019),  445–459  mathnet  elib; Theoret. and Math. Phys., 199:3 (2019), 864–877  isi  scopus
2017
2. A. V. Pereskokov, “Semiclassical Asymptotics of the Spectrum near the Lower Boundary of Spectral Clusters for a Hartree-Type Operator”, Mat. Zametki, 101:6 (2017),  894–910  mathnet  mathscinet  elib; Math. Notes, 101:6 (2017), 1009–1022  isi  scopus
2016
3. A. V. Pereskokov, “Semiclassical asymptotic approximation of the two-dimensional Hartree operator spectrum near the upper boundaries of spectral clusters”, TMF, 187:1 (2016),  74–87  mathnet  mathscinet  elib; Theoret. and Math. Phys., 187:1 (2016), 511–524  isi  scopus
2015
4. A. V. Pereskokov, “Asymptotics of the Hartree operator spectrum near the upper boundaries of spectral clusters: Asymptotic solutions localized near a circle”, TMF, 183:1 (2015),  78–89  mathnet  mathscinet  elib; Theoret. and Math. Phys., 183:1 (2015), 516–526  isi  scopus
2014
5. A. V. Pereskokov, “Semiclassical asymptotic spectrum of a Hartree-type operator near the upper boundary of spectral clusters”, TMF, 178:1 (2014),  88–106  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 178:1 (2014), 76–92  isi  elib  scopus
2013
6. A. V. Pereskokov, “Asymptotics of the spectrum and quantum averages of a perturbed resonant oscillator near the boundaries of spectral clusters”, Izv. RAN. Ser. Mat., 77:1 (2013),  165–210  mathnet  mathscinet  zmath  elib; Izv. Math., 77:1 (2013), 163–210  isi  elib  scopus
2012
7. A. V. Pereskokov, “Asymptotics of the spectrum of the hydrogen atom in a magnetic field near the lower boundaries of spectral clusters”, Tr. Mosk. Mat. Obs., 73:2 (2012),  277–325  mathnet  mathscinet  zmath  elib; Trans. Moscow Math. Soc., 73 (2012), 221–262  scopus
8. A. V. Pereskokov, “Asymptotics of the Spectrum and Quantum Averages near the Boundaries of Spectral Clusters for Perturbed Two-Dimensional Oscillators”, Mat. Zametki, 92:4 (2012),  583–596  mathnet  mathscinet  zmath  elib; Math. Notes, 92:4 (2012), 532–543  isi  elib  scopus
2003
9. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation”, Trudy Inst. Mat. i Mekh. UrO RAN, 9:1 (2003),  102–106  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2003no. , suppl. 1, S123–S128
2002
10. A. V. Pereskokov, “Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments”, TMF, 131:3 (2002),  389–406  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 131:3 (2002), 775–790  isi
2001
11. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. II. Localization in planar discs”, Izv. RAN. Ser. Mat., 65:6 (2001),  57–98  mathnet  mathscinet  zmath; Izv. Math., 65:6 (2001), 1127–1168  scopus
12. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity”, Izv. RAN. Ser. Mat., 65:5 (2001),  33–72  mathnet  mathscinet  zmath; Izv. Math., 65:5 (2001), 883–921  scopus
1995
13. M. V. Karasev, A. V. Pereskokov, “Turning points, phase shifts, and quantization rules in ordinary differential equations with a local rapidly decreasing nonlinearity”, Tr. Mosk. Mat. Obs., 56 (1995),  107–176  mathnet  mathscinet
1993
14. M. V. Karasev, A. V. Pereskokov, “On connection formulas for the second Painleve transcendent. Proof of the Miles conjecture, and a quantization rule”, Izv. RAN. Ser. Mat., 57:3 (1993),  92–151  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 42:3 (1994), 501–560  isi
15. M. V. Karasev, A. V. Pereskokov, “Logarithmic corrections in a quantization rule. The polaron spectrum”, TMF, 97:1 (1993),  78–93  mathnet  mathscinet; Theoret. and Math. Phys., 97:1 (1993), 1160–1170  isi
1992
16. M. V. Karasev, A. V. Pereskokov, “One-dimensional equations of a self-consistent field with cubic nonlinearity in quasiclassical approximation”, Mat. Zametki, 52:2 (1992),  66–82  mathnet  mathscinet  zmath; Math. Notes, 52:2 (1992), 801–814  isi
1989
17. M. V. Karasev, A. V. Pereskokov, “Quantization rule for self-consistent field equations with local rapidly decreasing nonlinearity”, TMF, 79:2 (1989),  198–208  mathnet  mathscinet; Theoret. and Math. Phys., 79:2 (1989), 479–486  isi
1988
18. A. V. Pereskokov, “Quantization rule for the nonlinear Schrödinger equation in an exterior field”, Mat. Zametki, 44:1 (1988),  149–152  mathnet  zmath
1985
19. M. V. Karasev, V. P. Maslov, A. V. Pereskokov, “Resonance frequencies of valves in optic media with spatial dispersion”, Dokl. Akad. Nauk SSSR, 281:5 (1985),  1085–1088  mathnet  mathscinet

Presentations in Math-Net.Ru
1. Spectrum and asymptotic solutions of equations with resonance leading part and Hartree-type nonlinearity localized near the small-dimensional submanifolds
A. V. Pereskokov
Complex analysis and mathematical physics
November 22, 2016 16:00

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019