RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Kirilenko, Mikhail Sergeevich

Statistics Math-Net.Ru
Total publications: 5
Scientific articles: 5

Number of views:
This page:44
Abstract pages:3518
Full texts:168
References:95
E-mail:

Biography

He graduated from Samara State Aerospace University (National Research University) in 2013 with Master degree, majoring in Applied Mathematics and Computer Science. He is currently a post-graduated student of third year of Technical Cybernetics department. He is working as a laboratory assistant at the Image Processing Systems Institute of the Russian Academy of Sciences. Research interests: diffractive optics, optical propagation operators, programming.


http://www.mathnet.ru/eng/person117444
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
2020
1. S. N. Khonina, S. G. Volotovsky, M. S. Kirilenko, “A method of generating a random optical field using the Karhunen-Loeve expansion to simulate atmospheric turbulence”, Computer Optics, 44:1 (2020),  53–59  mathnet
2019
2. M. S. Kirilenko, S. N. Khonina, “Investigation of the topological charge stability for multi-ringed Laguerre–Gauss vortex beams to random distortions”, Computer Optics, 43:4 (2019),  567–576  mathnet
3. S. N. Khonina, S. G. Volotovsky, M. S. Kirilenko, “Formation of required distributions on the basis of decomposition by vortex eigen functions of a bounded non-paraxial propagation operator”, Computer Optics, 43:2 (2019),  184–192  mathnet
2017
4. S. V. Karpeev, V. D. Paranin, M. S. Kirilenko, “Comparison of the stability of Laguerrå-Gauss vortex beams to random fluctuations of the optical environment”, Computer Optics, 41:2 (2017),  208–217  mathnet
2015
5. M. S. Kirilenko, R. O. Zubtsov, S. N. Khonina, “Calculation of eigenfunctions of a bounded fractional Fourier transform”, Computer Optics, 39:3 (2015),  332–338  mathnet
2014
6. M. S. Kirilenko, S. N. Khonina, “Calculation of eigenfunctions for imaging two-lens system with axial symmetry”, Computer Optics, 38:3 (2014),  412–417  mathnet

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020