RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Khokhlov, Andrew Vladimirovich

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 11
Presentations: 2

Number of views:
This page:160
Abstract pages:1304
Full texts:370
References:132
Khokhlov, Andrew Vladimirovich
Head Scientist Researcher
Candidate of technical sciences
Phone: +7 (495) 932 89 24
E-mail:
Keywords: viscoelastоplasticity, creep, rheology, damage, failure criteria, creep rupture, long-term strength, constitutive relations.

Subject:

solid mechanics, viscoelastоplasticity, creep theory, superplasticity, constitutive relations theory, mathematical modelling, numerical methods in solid mecanics, topologicfl algebra

   
Main publications:
  1. Khokhlov A.V., “Trefftz-like Numerical Method for Linear Boundary-value Problems”, Communications in Numerical Methods in Engineering, 9:7 (1993), 607-612  crossref  mathscinet
  2. Khokhlov A.V., “O stabilnykh podmnozhestvakh modulei i suschestvovanii edinitsy v assotsiativnykh koltsakh”, Matematicheskie zametki, 61:4 (1997), 596-611  mathnet  crossref  mathscinet
  3. Khokhlov A.V., “Opredelyayuschee sootnoshenie dlya reologicheskikh protsessov: svoistva teoreticheskikh krivykh polzuchesti i modelirovanie zatukhaniya pamyati”, Izvestiya RAN. Mekhanika tverdogo tela, 2007, № 2, 147-166
  4. Khokhlov A.V., “Opredelyayuschee sootnoshenie dlya reologicheskikh protsessov c izvestnoi istoriei nagruzheniya. Krivye polzuchesti i dlitelnoi prochnosti”, Izvestiya RAN. Mekhanika tverdogo tela., 2008, № 2, 140-160.
  5. Khokhlov A.V., “Kriterii razrusheniya pri polzuchesti, uchityvayuschie istoriyu deformirovaniya, i modelirovanie dlitelnoi prochnosti”, Izvestiya RAN. Mekhanika tverdogo tela., 2009, № 4, 121-135

http://www.mathnet.ru/eng/person122940
List of publications on Google Scholar
List of publications on ZentralBlatt
http://elibrary.ru/author_items.asp?authorid=151673
ISTINA http://istina.msu.ru/workers/5380446
http://orcid.org/0000-0002-9212-2579
http://www.researcherid.com/rid/G-8657-2013

Publications in Math-Net.Ru
2018
1. A. V. Khokhlov, “A nonlinear Maxwell-type model for rheonomous materials: stability under symmetric cyclic loadings”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2018, 2,  59–63  mathnet; Moscow University Mechanics Bulletin, 73:2 (2018), 39–42  isi  scopus
2. A. V. Khokhlov, “Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model under loading and unloading at constant stress rates”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:2 (2018),  293–324  mathnet  zmath  elib
3. A. V. Khokhlov, “Analysis of properties of creep curves generated by the linear viscoelasticity theory under arbitrary loading programs at initial stage”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 22:1 (2018),  65–95  mathnet  zmath  elib
4. A. V. Khokhlov, “Behavior types and features of lateral strain and Poisson's ratio of isotropic rheonomous materials under creep conditions described by the linear theory of viscoelasticity”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 10:4 (2018),  65–77  mathnet  elib
2017
5. A. V. Khokhlov, “Asymptotic behavior of creep curves in the Rabotnov nonlinear heredity theory under piecewise constant loadings and memory decay conditions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, 5,  26–31  mathnet; Moscow University Mechanics Bulletin, 72:5 (2017), 103–107  isi  scopus
6. A. V. Khokhlov, “Properties of relaxation curves for the case of initial stage of deformation with constant velocity in the linear heredity theory”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017, 3,  44–47  mathnet; Moscow University Mechanics Bulletin, 72:3 (2017), 55–58  isi  scopus
7. A. V. Khokhlov, “Analysis of creep curves produced by the linear viscoelasticity theory under cyclic stepwise loadings”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:2 (2017),  326–361  mathnet  zmath  elib
8. A. V. Khokhlov, “The nonlinear Maxwell-type model for viscoelastoplastic materials: simulation of temperature influence on creep, relaxation and strain-stress curves”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 21:1 (2017),  160–179  mathnet  elib
2016
9. A. V. Khokhlov, “Properties of a nonlinear Maxwell-type model of viscoelasticity with two material functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2016, 6,  36–41  mathnet; Moscow University Mechanics Bulletin, 71:6 (2016), 132–136  isi  scopus
10. A. V. Khokhlov, “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016),  524–543  mathnet  zmath  elib
1997
11. A. V. Khokhlov, “Stable subsets of modules and the existence of a unit in associative rings”, Mat. Zametki, 61:4 (1997),  596–611  mathnet  mathscinet  zmath; Math. Notes, 61:4 (1997), 495–509  isi

Presentations in Math-Net.Ru
1. Анализ возможностей нелинейного соотношения наследственности Работнова и линейного соотношения вязкоупругости
A. V. Khokhlov
All-Russian conference "Modern Problems of Continuum Mechanics" devoted to 110 anniversary of L. I. Sedov
November 13, 2017 19:00
2. Моделирование влияния температуры на кривые нагружения, ползучести и релаксации нелинейной модели типа Максвелла
A. V. Khokhlov
All-Russian conference "Modern Problems of Continuum Mechanics" devoted to 110 anniversary of L. I. Sedov
November 13, 2017 17:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019