RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Mironov Andrei Evgen'evich

Statistics Math-Net.Ru
Total publications: 33
Scientific articles: 31
Presentations: 27

Number of views:
This page:4202
Abstract pages:9243
Full texts:2722
References:983
Corresponding member of RAS
Doctor of physico-mathematical sciences (2011)
E-mail:
Website: http://math.nsc.ru/LBRT/d6/mironov
Keywords: integrable Hamiltonian systems, polynomial integrals.

Subject:

Integrable systems, geometry, mathematical physics.

   
Main publications:
  1. A.E. Mironov, “On new examples of Hamiltonian-minimal and minimal Lagrangian submanifolds in $\mathbb{C}^n$ and $\mathbb{CP}^n.$”, Sb. Math., 195:1 (2004), 85–96
  2. M. Bialy, A. E. Mironov, “Cubic and quartic integrals for geodesic flow on 2-torus via system of hydrodynamic type.”, Nonlinearity., 24 (2011), 3541–3554
  3. A. E. Mironov, “Self-adjoint commuting ordinary differential operators.”, Inventiones mathematicae., 197:2 (2014), 417–431
  4. P. G. Grinevich, A. E. Mironov, S. P. Novikov, “On the nonrelativistic 2D purely magnetic supersymmetric Pauli operator.”, Russian Math. Surveys, 70:2 (2015), 299–329
  5. A. E. Mironov, “Commuting self-adjoint differential operators of rank two.”, Russian Math. Surveys, 71 (2016)

http://www.mathnet.ru/eng/person13792
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:mironov.andrey-e
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=665711
Full list of publications: Download file (11 kB)

Publications in Math-Net.Ru
1. Self-adjoint commuting differential operators of rank two
A. E. Mironov
Uspekhi Mat. Nauk, 71:4(430) (2016),  155–184
2. Commuting Krichever–Novikov differential operators with polynomial coefficients
A. B. Zheglov, A. E. Mironov, B. T. Saparbayeva
Sibirsk. Mat. Zh., 57:5 (2016),  1048–1053
3. On fourth-degree polynomial integrals of the Birkhoff billiard
M. Bialy, A. E. Mironov
Tr. Mat. Inst. Steklova, 295 (2016),  34–40
4. Commuting difference operators of rank two
G. S. Mauleshova, A. E. Mironov
Uspekhi Mat. Nauk, 70:3(423) (2015),  181–182
5. On the non-relativistic two-dimensional purely magnetic supersymmetric Pauli operator
P. G. Grinevich, A. E. Mironov, S. P. Novikov
Uspekhi Mat. Nauk, 70:2(422) (2015),  109–140
6. Intersections of Quadrics, Moment-Angle Manifolds, and Hamiltonian-Minimal Lagrangian Embeddings
A. E. Mironov, T. E. Panov
Funktsional. Anal. i Prilozhen., 47:1 (2013),  47–61
7. Discretization of Baker–Akhiezer modules and commuting difference operators in several discrete variables
A. E. Mironov, A. Nakayashiki
Tr. Mosk. Mat. Obs., 74:2 (2013),  317–338
8. Hamiltonian-minimal Lagrangian submanifolds in toric varieties
A. E. Mironov, T. E. Panov
Uspekhi Mat. Nauk, 68:2(410) (2013),  203–204
9. Baker – Akhiezer modules, Krichever sheaves, and commuting rings of partial differential operators
A. B. Zheglov, A. E. Mironov
Dal'nevost. Mat. Zh., 12:1 (2012),  20–34
10. On polynomial integrals of a mechanical system on a two-dimensional torus
A. E. Mironov
Izv. RAN. Ser. Mat., 74:4 (2010),  145–156
11. 2D-Schrödinger Operator, (2+1) evolution systems and new reductions, 2D-Burgers hierarchy and inverse problem data
P. G. Grinevich, A. E. Mironov, S. P. Novikov
Uspekhi Mat. Nauk, 65:3(393) (2010),  195–196
12. Baker–Akhiezer Modules on Rational Varieties
Irina A. Melnik, Andrey E. Mironov
SIGMA, 6 (2010), 030
13. Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles
P. G. Grinevich, A. E. Mironov, S. P. Novikov
TMF, 164:3 (2010),  333–353
14. On commuting differential operators of rank $2$
A. E. Mironov
Sib. Èlektron. Mat. Izv., 6 (2009),  533–536
15. Spectral Data for Hamiltonian-Minimal Lagrangian Tori in $\mathbb C\mathrm P^2$
A. E. Mironov
Tr. Mat. Inst. Steklova, 263 (2008),  120–134
16. Relationship Between Symmetries of the Tzizeica Equation and the Novikov–Veselov Hierarchy
A. E. Mironov
Mat. Zametki, 82:4 (2007),  637–640
17. On a Family of Conformally Flat Minimal Lagrangian Tori in $\mathbb CP^3$
A. E. Mironov
Mat. Zametki, 81:3 (2007),  374–384
18. Commuting difference operators with polynomial coefficients
A. E. Mironov
Uspekhi Mat. Nauk, 62:4(376) (2007),  169–170
19. Discrete analogues of Dixmier operators
A. E. Mironov
Mat. Sb., 198:10 (2007),  57–66
20. Some algebraic examples of Frobenius manifolds
A. E. Mironov, I. A. Taimanov
TMF, 151:2 (2007),  195–206
21. Orthogonal Curvilinear Coordinate Systems Corresponding to Singular Spectral Curves
A. E. Mironov, I. A. Taimanov
Tr. Mat. Inst. Steklova, 255 (2006),  180–196
22. Commuting Rank 2 Differential Operators Corresponding to a Curve of Genus 2
A. E. Mironov
Funktsional. Anal. i Prilozhen., 39:3 (2005),  91–94
23. Spectral subvarieties of a principally polarized Abelian variety
A. E. Mironov
Uspekhi Mat. Nauk, 59:5(359) (2004),  157–158
24. Veselov-Novikov hierarchy of equations, and integrable deformations of minimal Lagrangian tori in $\mathbb CP^2$
A. E. Mironov
Sib. Èlektron. Mat. Izv., 1 (2004),  38–46
25. A ring of commuting differential operators of rank 2 corresponding to a curve of genus 2
A. E. Mironov
Mat. Sb., 195:5 (2004),  103–114
26. New examples of Hamilton-minimal and minimal Lagrangian manifolds in $\mathbb C^n$ and $\mathbb C\mathrm P^n$
A. E. Mironov
Mat. Sb., 195:1 (2004),  89–102
27. On Hamiltonian-minimal Lagrangian tori in $\mathbb{C}P^2$
A. E. Mironov
Sibirsk. Mat. Zh., 44:6 (2003),  1324–1328
28. Commutative rings of differential operators corresponding to multidimensional algebraic varieties
A. E. Mironov
Sibirsk. Mat. Zh., 43:5 (2002),  1102–1114
29. Real commutative differential operators associated with two-dimensional Abelian varieties
A. E. Mironov
Sibirsk. Mat. Zh., 43:1 (2002),  126–143
30. On nonlinear equations integrable in theta-functions of nonprincipally polarized Abelian varieties
A. E. Mironov
Sibirsk. Mat. Zh., 42:1 (2001),  113–122
31. Commutative rings of differential operators connected with two-dimensional Abelian varieties
A. E. Mironov
Sibirsk. Mat. Zh., 41:6 (2000),  1389–1403

32. The conference “Dynamics in Siberia”, Novosibirsk, February 26–March 4, 2017
I. A. Dynnikov, A. A. Glutsyuk, A. E. Mironov, I. A. Taimanov, A. Yu. Vesnin
Sib. Èlektron. Mat. Izv., 14 (2017),  7–30
33. The Conference «Dynamics in Siberia», Novosibirsk, February 29–March 4, 2016
I. A. Dynnikov, A. E. Mironov, I. A. Taimanov, A. Yu. Vesnin
Sib. Èlektron. Mat. Izv., 13 (2016),  1–41

Presentations in Math-Net.Ru
1. Алгебраическая неинтегрируемость магнитных бильярдов на плоскости
A. E. Mironov

December 9, 2017 13:20   
2. Интегрируемые магнитные геодезические потоки на двумерном торе
A. E. Mironov

December 8, 2017 15:15   
3. Обыкновенные коммутирующие дифференциальные операторы с полиномиальными коэффициентами и автоморфизмы первой алгебры Вейля.
A. E. Mironov
Laboratory of algebraic geometry: weekly seminar
October 6, 2017 17:00
4. Интегрируемые магнитные геодезические потоки на двумерном торе
A. E. Mironov

April 24, 2017
5. Algebraic non-integrability of magnetic billiards
A. E. Mironov
Matsbornik-150: algebra, geometry, analysis
November 7, 2016 10:10   
6. Угловой бильярд
A. E. Mironov
Differential geometry and applications
October 17, 2016 16:45
7. Задача об интегрируемом бильярде и алгебраические кривые
A. E. Mironov
International conference on algebraic geometry, complex analysis and computer algebra
August 4, 2016 10:50
8. Угловой бильярд и гипотеза Биркгофа
A. E. Mironov
Sinai Seminar
August 2, 2016 14:00
9. Интегрируемые магнитные геодезические потоки на двумерном торе и системы гидродинамического типа
A. E. Mironov

June 16, 2016 14:05   
10. Угловой бильярд и гипотеза Биркгофа
A. E. Mironov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
February 17, 2016 18:30
11. Integrable geodesic flows on 2-torus and the systems of hydrodynamical type
A. E. Mironov
International scientific conference "Days of Classical Mechanics"
January 26, 2015 16:40   
12. Discrete Dynamics of the Tyurin Parameters and Commuting Difference Operators
Gulnara S. Mauleshova, Andrey E. Mironov
International youth conference "Geometry & Control"
April 15, 2014 17:00
13. Интегрируемые геодезические потоки на двумерном торе
A. E. Mironov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
March 12, 2014 18:30
14. Periodic and rapid decay rank two self-adjoint commuting differential operators
Andrey Mironov
International conference "Algebraic Topology and Abelian Functions" in honour of Victor Buchstaber on occasion of his 70th birthday
June 18, 2013 12:20   
15. Разностные операторы Кричевера-Новикова.
A. E. Mironov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
April 10, 2013 18:30
16. Commuting differential operators
A. E. Mironov
Seminar "Complex analysis in several variables" (Vitushkin Seminar)
November 14, 2012 16:45
17. Self-adjoint commuting ordinary differential operators of rank two.
A. E. Mironov
International Workshop «Geometric Structures in Integrable Systems»
October 31, 2012 14:00   
18. Коммутирующие дифференциальные операторы
A. E. Mironov
Meetings of the Moscow Mathematical Society
October 16, 2012 18:30
19. Коммутирующие обыкновенные дифференциальные операторы ранга два
A. E. Mironov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
October 3, 2012 18:30
20. Baker-Akhiezer functions in differential geometry and mathematical physics. Lecture 3
A. E. Mironov
Summer School on Geometry and Mathematical Physics 2012
June 29, 2012 14:30   
21. Baker-Akhiezer functions in differential geometry and mathematical physics. Lecture 2
A. E. Mironov
Summer School on Geometry and Mathematical Physics 2012
June 28, 2012 09:40   
22. Baker-Akhiezer functions in differential geometry and mathematical physics. Lecture 1
A. E. Mironov
Summer School on Geometry and Mathematical Physics 2012
June 27, 2012 09:40   
23. Self-adjoint commuting ordinary differential operators and commuting subalgebras of the Weyl algebra.
A. E. Mironov
International conference "Geometrical Methods in Mathematical Physics"
December 15, 2011 14:00   
24. Модули Бейкера–Ахиезера и комутативные кольца дифференциальных операторов в частных производных
A. E. Mironov
Riemann surfaces, Lie algebras and mathematical physics
December 2, 2011 17:00
25. Модули Бейкера–Ахиезера на рациональных многообразиях
A. E. Mironov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
December 2, 2009 18:30
26. Модули Бейкера–Ахиезера на алгебраических многообразиях: примеры коммутативных колец дифференциальных операторов по нескольким переменным
A. E. Mironov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
December 5, 2007
27. Дискретный аналог операторов Диксьме
A. E. Mironov
Seminar of the Department of Geometry and Topology "Geometry, Topology and Mathematical Physics", Steklov Mathematical Institute of RAS
September 27, 2006

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018