RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Vakhrameev, Sergei Aleksandrovich

Statistics Math-Net.Ru
Total publications: 22
Scientific articles: 22
Presentations: 2

Number of views:
This page:500
Abstract pages:4943
Full texts:2225
References:188
E-mail:

http://www.mathnet.ru/eng/person17288
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/190427

Publications in Math-Net.Ru
2007
1. S. A. Vakhrameev, E. P. Krugova, “A Note on the Structure of $M$-Matrices”, CMFD, 23 (2007),  87–95  mathnet  mathscinet  zmath; Journal of Mathematical Sciences, 154:4 (2008), 539–548  scopus
1999
2. S. A. Vakhrameev, “An existence theorem for a nonlinear time-optimality problem”, Differ. Uravn., 35:4 (1999),  565–567  mathnet  mathscinet; Differ. Equ., 35:4 (1999), 567–569
1998
3. S. A. Vakhrameev, “A note on convexity in smooth nonlinear systems”, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 60 (1998),  42–73  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 100:5 (2000), 2470–2490
4. S. A. Vakhrameev, “Bang-bang theorems and related questions”, Tr. Mat. Inst. Steklova, 220 (1998),  49–112  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 220 (1998), 45–108
1996
5. S. A. Vakhrameev, “An existence theorem for a non-linear time-optimal problem in a class of bang-bang controls with finitely many switchings”, Uspekhi Mat. Nauk, 51:2(308) (1996),  151–152  mathnet  mathscinet  zmath; Russian Math. Surveys, 51:2 (1996), 353–354  isi  scopus
1994
6. S. A. Vakhrameev, “Transversal convexity of reachable sets for a class of smooth control systems of constant rank”, Dokl. Akad. Nauk, 338:1 (1994),  7–9  mathnet  mathscinet  zmath; Dokl. Math., 50:2 (1995), 175–178
7. S. A. Vakhrameev, “Once more on the bang-bang control theorem for smooth control systems of constant rank”, Dokl. Akad. Nauk, 337:5 (1994),  567–569  mathnet  mathscinet  zmath; Dokl. Math., 50:1 (1995), 117–121
8. S. A. Vakhrameev, “A theorem on the finiteness of the switching number for smooth non-linear controlled systems”, Uspekhi Mat. Nauk, 49:6(300) (1994),  197–198  mathnet  mathscinet  zmath; Russian Math. Surveys, 49:6 (1994), 218–220  isi
1992
9. S. A. Vakhrameev, “Morse theory for a class of optimal control problems”, Dokl. Akad. Nauk, 326:3 (1992),  404–408  mathnet  mathscinet  zmath; Dokl. Math., 46:2 (1993), 269–273
10. S. A. Vakhrameev, “On the Fredholm property of a manifold”, Uspekhi Mat. Nauk, 47:5(287) (1992),  169–170  mathnet  mathscinet  zmath; Russian Math. Surveys, 47:5 (1992), 205–206  isi
1991
11. S. A. Vakhrameev, “The Lyusternik–Shnirel'man theory for transversally convex subsets of Hilbert manifolds and its application in optimal control theory”, Dokl. Akad. Nauk SSSR, 319:1 (1991),  18–21  mathnet  mathscinet  zmath; Dokl. Math., 44:1 (1992), 10–13
12. S. A. Vakhrameev, “The Morse index theorem for extremals of some optimal control problems”, Dokl. Akad. Nauk SSSR, 317:1 (1991),  11–15  mathnet  mathscinet  zmath; Dokl. Math., 43:2 (1991), 301–305
13. S. A. Vakhrameev, “Morse theory and Lyusternik–Shnirel'man theory in geometric control theory”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 39 (1991),  41–117  mathnet  mathscinet  zmath; J. Math. Sci., 71:3 (1994), 2434–2485
1990
14. S. A. Vakhrameev, “Hilbert manifolds with angles of finite codimension, and optimal control theory”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 28 (1990),  96–171  mathnet  mathscinet  zmath; J. Soviet Math., 53:2 (1991), 176–223
15. S. A. Vakhrameev, “The Palais–Smale theory for manifolds with corners. I. Finite-dimensional case”, Uspekhi Mat. Nauk, 45:4(274) (1990),  141–142  mathnet  mathscinet  zmath; Russian Math. Surveys, 45:4 (1990), 190–191  isi
1989
16. S. A. Vakhrameev, “Smooth controllable systems of constant rank and linearizable systems”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 35 (1989),  135–178  mathnet  mathscinet  zmath; J. Soviet Math., 55:4 (1991), 1864–1891
17. R. V. Gamkrelidze, A. A. Agrachev, S. A. Vakhrameev, “Ordinary differential equations on vector bundles, and chronological calculus”, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Nov. Dostizh., 35 (1989),  3–107  mathnet  mathscinet  zmath; J. Soviet Math., 55:4 (1991), 1777–1848
1986
18. A. A. Agrachev, S. A. Vakhrameev, “Linearly controlled systems of constant rank and relay conditions for extreme control”, Uspekhi Mat. Nauk, 41:6(252) (1986),  163–164  mathnet  mathscinet  zmath; Russian Math. Surveys, 41:6 (1986), 199–200  isi
1985
19. S. A. Vakhrameev, A. V. Sarychev, “Geometric theory of control”, Itogi Nauki i Tekhniki. Ser. Algebra. Topol. Geom., 23 (1985),  197–280  mathnet  mathscinet  zmath; J. Soviet Math., 40:3 (1988), 384–447
1984
20. A. A. Agrachev, S. A. Vakhrameev, “Nonlinear control systems of constant rank and bang-bang conditions for extremal controls”, Dokl. Akad. Nauk SSSR, 279:2 (1984),  265–269  mathnet  mathscinet
1983
21. A. A. Agrachev, S. A. Vakhrameev, R. V. Gamkrelidze, “Differential geometric and group theoretic methods in optimal control theory”, Itogi Nauki i Tekhniki. Ser. Probl. Geom., 14 (1983),  3–56  mathnet  mathscinet  zmath; J. Soviet Math., 28:2 (1985), 145–182
1981
22. A. A. Agrachev, S. A. Vakhrameev, “Chronological series and the Cauchy–Kovalevskaya theorem”, Itogi Nauki i Tekhniki. Ser. Probl. Geom., 12 (1981),  165–189  mathnet  mathscinet  zmath; J. Soviet Math., 21:2 (1983), 231–250

Presentations in Math-Net.Ru
1. О свойствах $M$-матриц
S. A. Vakhrameev, E. P. Krugova
Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov
November 9, 2007 18:30
2. Хаpактеpизация точек пеpеключения экстpемальных упpавлений для одного класса нелинейных гладких упpавляемых систем: ваpиационный подход
S. A. Vakhrameev
Scientic seminar «Actual problems of geometry and mechanics » named after Prof. V.V. Trofimov
November 17, 2000 18:30

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021