RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Repin, Sergey Igorevich

Statistics Math-Net.Ru
Total publications: 34
Scientific articles: 32
Presentations: 3

Number of views:
This page:2409
Abstract pages:5984
Full texts:1781
References:609
Professor
Doctor of physico-mathematical sciences (1994)
Speciality: 01.01.07 (Computing mathematics)
Birth date: 18.07.1953
E-mail: ,
Keywords: partial differential equations; calculus of variations and duality theory; a priori and a posteriori error estimates; mathematical modelling.
   
Main publications:
  • A posteriori error estimates for variational problems with uniformly convex functionals // Math. Comp. 69 (2000) 230, 481–500.
  • A posteriori error estimates for nonlinear variational problems by duality theory // Zapiski Nauchn. Semin. POMI. 243 (1997), 201–214.

http://www.mathnet.ru/eng/person17497
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/228901
http://elibrary.ru/author_items.asp?authorid=8454

Publications in Math-Net.Ru
2019
1. D. Pauly, S. Repin, “A posteriori estimates for the stationary Stokes problem in exterior domains”, Algebra i Analiz, 31:3 (2019),  184–215  mathnet
2017
2. S. Repin, “On projectors to subspaces of vector valued functions subject to conditions of the divergence free type”, Zap. Nauchn. Sem. POMI, 459 (2017),  83–103  mathnet
2016
3. S. Repin, “On variational representations of the constant in the inf sup condition for the Stokes problem”, Zap. Nauchn. Sem. POMI, 444 (2016),  110–123  mathnet  mathscinet; J. Math. Sci. (N. Y.), 224:3 (2017), 456–467  scopus
2014
4. S. Repin, “Estimates of the distance to the set of divergence free fields”, Zap. Nauchn. Sem. POMI, 425 (2014),  99–116  mathnet; J. Math. Sci. (N. Y.), 210:6 (2015), 822–834  scopus
5. S. Matculevich, S. Repin, “Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities”, Zap. Nauchn. Sem. POMI, 425 (2014),  7–34  mathnet; J. Math. Sci. (N. Y.), 210:6 (2015), 759–778  scopus
2013
6. S. Repin, “Estimates of deviations from exact solution of the generalized Oseen problem”, Zap. Nauchn. Sem. POMI, 410 (2013),  110–130  mathnet  mathscinet; J. Math. Sci. (N. Y.), 195:1 (2013), 64–75  scopus
2011
7. A. Mikhaylov, S. Repin, “Estimates of deviations from exact solution of the Stokes problem in the vorticity-velocity-pressure formulation”, Zap. Nauchn. Sem. POMI, 397 (2011),  73–88  mathnet  mathscinet; J. Math. Sci. (N. Y.), 185:5 (2012), 698–706  scopus
2010
8. M. Fuchs, S. Repin, “Some Poincaré-type inequalities for functions of bounded deformation involving the deviatoric part of the symmetric gradient”, Zap. Nauchn. Sem. POMI, 385 (2010),  224–233  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 367–372  scopus
2009
9. S. I. Repin, “Estimates of deviations from exact solutions of variational problems with linear growth functionals”, Zap. Nauchn. Sem. POMI, 370 (2009),  132–150  mathnet; J. Math. Sci. (N. Y.), 166:1 (2010), 75–85  scopus
10. D. Pauly, S. Repin, “Two-sided a posteriori error bounds for electro-magneto static problems”, Zap. Nauchn. Sem. POMI, 370 (2009),  94–110  mathnet; J. Math. Sci. (N. Y.), 166:1 (2010), 53–62  scopus
2008
11. S. Repin, R. Stenberg, “A posteriori estimates for a generalized Stokes problem”, Zap. Nauchn. Sem. POMI, 362 (2008),  272–302  mathnet  zmath; J. Math. Sci. (N. Y.), 159:4 (2009), 541–558  scopus
2007
12. S. I. Repin, “Functional a posteriori estimates for elliptic variational inequalities”, Zap. Nauchn. Sem. POMI, 348 (2007),  147–164  mathnet; J. Math. Sci. (N. Y.), 152:5 (2008), 702–712  scopus
13. S. Nicaise, S. I. Repin, “Functional a posteriori error estimates for the reaction-convection-diffusion problem”, Zap. Nauchn. Sem. POMI, 348 (2007),  127–146  mathnet; J. Math. Sci. (N. Y.), 152:5 (2008), 690–701  scopus
2006
14. M. Bildhauer, S. I. Repin, “Estimates of the deviation from the minimizer for variational problems with power growth functionals”, Zap. Nauchn. Sem. POMI, 336 (2006),  5–24  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 143:2 (2007), 2845–2856  scopus
2005
15. A. V. Gaevskaya, S. I. Repin, “A Posteriori Error Estimates for Approximate Solutions of Linear Parabolic Problems”, Differ. Uravn., 41:7 (2005),  925–937  mathnet  mathscinet; Differ. Equ., 41:7 (2005), 970–983
16. A. V. Muzalevskii, S. I. Repin, “On error estimates for approximate solutions in problems of the linear theory of thermoelasticity”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, 1,  64–72  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 49:1 (2005), 60–68
2004
17. S. I. Repin, “Estimates of deviation from the exact solutions for some boundary-value problems with incompressibilily condition”, Algebra i Analiz, 16:5 (2004),  124–161  mathnet  mathscinet  zmath; St. Petersburg Math. J., 16:5 (2005), 837–862
18. S. I. Repin, “Local a posteriori estimates for the Stokes problem”, Zap. Nauchn. Sem. POMI, 318 (2004),  233–245  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 136:2 (2006), 3786–3793
19. S. I. Repin, M. E. Frolov, “On the estimate of deviations from the exact solution of the Reissner–Mindlin plate problem”, Zap. Nauchn. Sem. POMI, 310 (2004),  145–157  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 132:3 (2006), 331–338
2002
20. S. I. Repin, “Estimates of deviations for generalized Newtonian fluids”, Zap. Nauchn. Sem. POMI, 288 (2002),  178–203  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 123:6 (2004), 4621–4636
21. S. I. Repin, M. E. Frolov, “A posteriori error estimates for approximate solutions to boundary problem of elliptic equations”, Zh. Vychisl. Mat. Mat. Fiz., 42:12 (2002),  1774–1787  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 42:12 (2002), 1704–1716
2000
22. S. I. Repin, “Estimates of deviations from exact solutions of elliptic variational inequalities”, Zap. Nauchn. Sem. POMI, 271 (2000),  188–203  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 115:6 (2003), 2811–2819
1999
23. S. I. Repin, “A posteriori estimates for the accuracy of variational methods for problems with nonconvex functionals”, Algebra i Analiz, 11:4 (1999),  151–182  mathnet  mathscinet  zmath; St. Petersburg Math. J., 11:4 (2000), 651–672
24. S. I. Repin, “A posteriori estimates for the Stokes problem”, Zap. Nauchn. Sem. POMI, 259 (1999),  195–211  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 109:5 (2002), 1950–1964
1997
25. S. I. Repin, “A posteriori error estimates for approximate solutions of variational problems with power growtn functionals”, Zap. Nauchn. Sem. POMI, 249 (1997),  244–255  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 101:5 (2000), 3531–3538
26. S. I. Repin, “A posteriori error estimation for nonlinear variational problems by duality theory”, Zap. Nauchn. Sem. POMI, 243 (1997),  201–214  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 99:1 (2000), 927–935
1996
27. S. I. Repin, A. V. Muzalevskii, “Numerical modelling of discontinuous solution of perfectly elasto-plastic problems”, Matem. Mod., 8:4 (1996),  113–127  mathnet  zmath
1995
28. S. I. Repin, “A priori error estimates of variational-difference methods for Hencky plasticity problems”, Zap. Nauchn. Sem. POMI, 221 (1995),  226–234  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 87:2 (1997), 3421–3427
1994
29. S. I. Repin, “On the approximation of solutions of variational problems in the theory of ideal plasticity”, Izv. Vyssh. Uchebn. Zaved. Mat., 1994, 9,  60–69  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 59:9 (1994), 59–68
1989
30. S. I. Repin, “A variational-difference method of solving problems with functionals of linear growth”, Zh. Vychisl. Mat. Mat. Fiz., 29:5 (1989),  693–708  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 29:3 (1989), 35–46
1988
31. S. I. Repin, “A variational difference method for solving problems of ideal plasticity in which discontinuities may appear”, Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  449–453  mathnet  zmath; U.S.S.R. Comput. Math. Math. Phys., 28:2 (1988), 96–99
1987
32. S. I. Repin, “Minimization of a class of non-differentiable functionals by a relaxation method”, Zh. Vychisl. Mat. Mat. Fiz., 27:7 (1987),  976–983  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 27:4 (1987), 9–14

2008
33. I. V. Denisova, K. I. Pileckas, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, E. V. Frolova, “To Solonnikov's jubilee”, Zap. Nauchn. Sem. POMI, 362 (2008),  5–14  mathnet  zmath; J. Math. Sci. (N. Y.), 159:4 (2009), 385–390  scopus
2002
34. A. A. Arkhipova, M. S. Birman, V. S. Buslaev, V. G. Osmolovskii, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, T. N. Shilkin, “To the jubillee of O. A. Ladyzhenskaya”, Zap. Nauchn. Sem. POMI, 288 (2002),  5–13  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 123:6 (2004), 4523–4526

Presentations in Math-Net.Ru
1. Апостериорный анализ приближённых решений задач математической физики
S. I. Repin
III International Conference «Supercomputer Technologies in Mathematical Modelling»(SCTeMM-2016)
June 28, 2016 11:45   
2. Заседание, посвященное 100-летию метода Галёркина
I. I. Demidova, S. I. Repin
Meetings of the St. Petersburg Mathematical Society
December 22, 2015 18:00
3. On the significance of Galerkin method for the analysis of differential equations
S. I. Repin
Seminar on the History of Mathematics
December 22, 2015 18:00   

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019