Marshakov Andrei Vladimirovich

Statistics Math-Net.Ru
Total publications: 20
Scientific articles: 20
Presentations: 3

Number of views:
This page:1571
Abstract pages:5762
Full texts:1981
Doctor of physico-mathematical sciences (1997)
Speciality: 01.04.02 (Theoretical physics)
Birth date: 14.05.1964
E-mail: ,
Keywords: string theory, integrable systems, quantum field theory, algebraic geometry.
Main publications:
  • Seiberg–Witten theory and integrable systems, World Scientific, 1999.
  • WDVV-like equations in N=2 SUSY Yang–Mills Theory (with A. Mironov and A. Morozov) // Phys. Lett. B, 389 (1996), 43–52.
  • Integrability and Seiberg–Witten exact solution (with A. Gorsky, I. Krichever, A. Mironov, and A. Morozov) // Phys. Lett. B, 355 (1995), 466–474.
  • Струны, суперсимметричные калибровочные теории и интегрируемые системы // Теор. и матем. физика, 121 (1999), 179–243.
  • Integrable Structure of the Dirichlet Boundary Problem in Two Dimensions (with P. Wiegmann and A. Zabrodin), hep-th/0109048; to appear in Commun. Math. Phys.
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. Free fermions, $W$-algebras, and isomonodromic deformations
P. G. Gavrilenko, A. V. Marshakov
TMF, 187:2 (2016),  232–262
2. Gauge theories as matrix models
A. V. Marshakov
TMF, 169:3 (2011),  391–412
3. Period integrals, quantum numbers, and confinement in SUSY QCD
A. V. Marshakov
TMF, 165:3 (2010),  488–502
4. Combinatorial expansions of conformal blocks
A. V. Marshakov, A. D. Mironov, A. Yu. Morozov
TMF, 164:1 (2010),  3–27
5. Non-Abelian gauge theories, prepotentials, and Abelian differentials
A. V. Marshakov
TMF, 159:2 (2009),  220–242
6. On the microscopic origin of integrability in the Seiberg–Witten theory
A. V. Marshakov
TMF, 154:3 (2008),  424–450
7. Matrix models, complex geometry, and integrable systems: II$^*$
A. V. Marshakov
TMF, 147:3 (2006),  399–449
8. Matrix models, complex geometry, and integrable systems: I
A. V. Marshakov
TMF, 147:2 (2006),  163–228
9. Matrix Model and Stationary Problem in the Toda Chain
A. V. Marshakov
TMF, 146:1 (2006),  3–16
10. Complex Geometry of Matrix Models
L. O. Chekhov, A. V. Marshakov, A. D. Mironov, D. Vasiliev
Tr. Mat. Inst. Steklova, 251 (2005),  265–306
11. Semiclassical geometry and integrability of the ads/cft correspondence
A. V. Marshakov
TMF, 142:2 (2005),  265–283
12. On Associativity Equations
A. V. Marshakov
TMF, 132:1 (2002),  3–49
13. String theory or field theory?
A. V. Marshakov
UFN, 172:9 (2002),  977–1020
14. Electric-Magnetic Duality and WDVV Equations
B. de Wit, A. V. Marshakov
TMF, 129:2 (2001),  230–238
15. First-Quantized Fermions in Compact Dimensions
A. V. Marshakov
TMF, 128:3 (2001),  446–460
16. Strings, SUSY gauge theories, and integrable systems
A. V. Marshakov
TMF, 121:2 (1999),  179–243
17. On integrable systems and supersymmetric gauge theories
A. V. Marshakov
TMF, 112:1 (1997),  3–46
18. On third Poisson structure of KdV equation
A. S. Gorsky, A. V. Marshakov, A. Yu. Orlov, V. N. Rubtsov
TMF, 103:3 (1995),  461–466
19. Landau–Ginzburg topological theories in the framework of GKM and equivalent hierarchies
S. M. Kharchev, A. V. Marshakov, A. D. Mironov, A. Yu. Morozov
TMF, 95:2 (1993),  280–292
20. Free field representation of parafermions and related coset models
A. A. Gerasimov, A. V. Marshakov, A. Yu. Morozov
TMF, 83:2 (1990),  186–196

Presentations in Math-Net.Ru
1. Exact conformal blocks for the W-algebras and isomonodromic deformations
A. V. Marshakov
5th Workshop on Combinatorics of Moduli Spaces, Hurwitz Spaces and Cohomological Field Theories
June 9, 2016 12:30   
2. On Cluster Integrable Systemes and (Affine) Lie Groups
A. V. Marshakov
Fourth international workshop "Combinatorics of Moduli Spaces, Cluster Algebras and Topological Recursion"
May 29, 2014 11:10   
3. Extended Seiberg-Witten theory and integrable hierarchy
A. V. Marshakov
Seminar of the Department of Theoretical Physics, Steklov Mathematical Institute of RAS
January 31, 2007 14:00

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2018