RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Aleksandrov, Vladimir Mikhailovich

Statistics Math-Net.Ru
Total publications: 33
Scientific articles: 33

Number of views:
This page:1154
Abstract pages:5647
Full texts:1566
References:802
Senior Researcher
Doctor of physico-mathematical sciences (2002)
Speciality: 05.13.18 (Mathematical modeling, numerical methods, and the program systems)
Birth date: 18.02.1937
E-mail: , ,
Keywords: optimal control, control theory, computing mathematics.

Subject:

Introduced in the theory of optimal processes is the notion of varing with the initial conditions constraints on the components of the control vector. The method of forming quasi-optimal control has been elaborated according to which the optimal control is a function of the initial values of phase coordinates taken with piecewise constant weight coefficients. Evaluations of closeness of the quasi-optimal control to the optimal one have been determined. The numerical methods for solving different problems of optimal control have been developed. They are: linear time optimal control, finite control, minimizing resources consumption, inverse problems of optimal control, structural and parametric optimization and others. Convergence of the iterative numerical methods has been proved. The method of sequential synthesis of time optimal control by dynamical systems has been proposed.

Biography

Graduated from St. Petersburg State Electro-Technical University (Automation and Computing Machinery Department) — 1960. Candidate's degree — 1966. Awarded the rank of senior scientific worker— 1974. Doctor's degree — 2002. Have more than 120 published papers. Lecturing the course of studies on "Theory Optimal Processes" at Novosibirsk State University, Chair of Theoretical Cybernetics — since 1981.

   
Main publications:
  • Aleksandrov V. M. Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya // Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki. 1999. T. 39. # 9. S. 1464–1478.
  • Aleksandrov V. M. Priblizhennoe reshenie lineinoi zadachi na minimum raskhoda resursov // Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki. 1999. T. 39. # 3. S. 418–430.
  • Aleksandrov V. M. Priblizhennoe reshenie zadachi lineinogo bystrodeistviya // Avtomatika i telemekhanika. 1998. # 12. S. 3–13.
  • Aleksandrov V. M. Chislennyi metod resheniya zadachi lineinogo bystrodeistviya // Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki. 1998. T. 38. # 6. S. 918–931.
  • Aleksandrov V. M. Priblizhennoe reshenie zadach optimalnogo upravleniya // Problemy kibernetiki. M.: Nauka, 1984. Vyp. 41. S. 143–206.

http://www.mathnet.ru/eng/person17513
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/211542

Publications in Math-Net.Ru
2018
1. V. M. Aleksandrov, “On some problems of optimal control”, Sib. Èlektron. Mat. Izv., 15 (2018),  1383–1409  mathnet
2. V. M. Aleksandrov, “Optimal resource consumption control with interval restrictions”, Sib. Zh. Ind. Mat., 21:2 (2018),  3–16  mathnet  elib; J. Appl. Industr. Math., 12:2 (2018), 201–212  scopus
2017
3. V. M. Aleksandrov, “Optimal resource consumption control of perturbed systems”, Sib. Zh. Vychisl. Mat., 20:3 (2017),  223–238  mathnet  elib; Num. Anal. Appl., 10:3 (2017), 185–197  isi  scopus
2016
4. V. M. Aleksandrov, “Quasi-optimal control of dynamic systems”, Avtomat. i Telemekh., 2016, 7,  47–67  mathnet  elib; Autom. Remote Control, 77:7 (2016), 1163–1179  isi  elib  scopus
5. V. M. Aleksandrov, “A singular solution to the problem of minimizing resource consumption”, Sib. Zh. Vychisl. Mat., 19:1 (2016),  5–18  mathnet  mathscinet  elib; Num. Anal. Appl., 9:1 (2016), 1–11  isi  elib  scopus
2015
6. V. M. Aleksandrov, “Computing of optimal inertial control with a linear system”, Sib. Zh. Vychisl. Mat., 18:1 (2015),  1–13  mathnet  mathscinet  elib; Num. Anal. Appl., 8:1 (2015), 1–12  scopus
7. V. M. Aleksandrov, “Optimal control of linear systems with interval constraints”, Zh. Vychisl. Mat. Mat. Fiz., 55:5 (2015),  758–775  mathnet  mathscinet  zmath  elib; Comput. Math. Math. Phys., 55:5 (2015), 749–765  isi  elib  scopus
2014
8. V. M. Aleksandrov, “Construction of initial approximation and method of computing optimal control”, Sib. Èlektron. Mat. Izv., 11 (2014),  87–118  mathnet
9. V. M. Aleksandrov, “A method of optimal real-time computation of a linear system with retarded control”, Sib. Zh. Vychisl. Mat., 17:1 (2014),  17–30  mathnet  mathscinet; Num. Anal. Appl., 7:1 (2014), 15–25  isi  scopus
2013
10. V. M. Aleksandrov, “Transferring a system with unknown disturbance under optimal control to a state of dynamic balance and to $\epsilon$-vicinity of a final state”, Sib. Zh. Vychisl. Mat., 16:2 (2013),  133–145  mathnet  mathscinet  elib; Num. Anal. Appl., 6:2 (2013), 119–130  scopus
2012
11. V. M. Aleksandrov, “Optimal control of dynamic system under insufficient information”, Sib. Èlektron. Mat. Izv., 9 (2012),  329–345  mathnet
12. V. M. Aleksandrov, “Forming an approximating construction for calculation and implementation of optimal control in real time”, Sib. Zh. Vychisl. Mat., 15:1 (2012),  1–19  mathnet  elib; Num. Anal. Appl., 5:1 (2012), 1–16  scopus
13. V. M. Aleksandrov, “Real-time computation of optimal control”, Zh. Vychisl. Mat. Mat. Fiz., 52:10 (2012),  1778–1800  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 52:10 (2012), 1351–1372
2011
14. V. M. Aleksandrov, “Approximation of attainability sets and calculation of time-optimal control in real time”, Sib. Èlektron. Mat. Izv., 8 (2011),  72–104  mathnet
15. V. M. Aleksandrov, V. A. Dykhta, “Approximate solution to the resource consumption minimization problem. II. Estimates for the proximity of controls”, Sib. Zh. Ind. Mat., 14:3 (2011),  3–13  mathnet  mathscinet; J. Appl. Industr. Math., 6:2 (2012), 135–144
16. V. M. Aleksandrov, V. A. Dykhta, “Approximate solution to the resource consumption minimization problem. I. Construction of a quasioptimal control”, Sib. Zh. Ind. Mat., 14:2 (2011),  3–14  mathnet  mathscinet; J. Appl. Industr. Math., 5:4 (2011), 467–477
17. V. M. Aleksandrov, “Resource-optimal control of linear systems”, Zh. Vychisl. Mat. Mat. Fiz., 51:4 (2011),  562–579  mathnet  mathscinet; Comput. Math. Math. Phys., 51:4 (2011), 520–536  isi  scopus
2010
18. V. M. Aleksandrov, “Resource consumption optimal and quasi-optimal controls for dynamic systems”, Sib. Èlektron. Mat. Izv., 7 (2010),  166–249  mathnet
19. V. M. Aleksandrov, “Optimal Resource Consumption Control of Disturbed Dynamic Systems”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 10:2 (2010),  3–24  mathnet; J. Math. Sci., 186:3 (2012), 331–351
2009
20. V. M. Aleksandrov, “Features of motion of dynamic systems with disturbances in the neighborhood of manifolds of switchings”, Avtomat. i Telemekh., 2009, 4,  58–77  mathnet  mathscinet  zmath; Autom. Remote Control, 70:4 (2009), 615–632  isi  scopus
21. V. M. Aleksandrov, “Sequential synthesis of time optimal control by a linear system with disturbance”, Sib. Èlektron. Mat. Izv., 6 (2009),  385–439  mathnet  mathscinet
22. V. M. Aleksandrov, “A numerical method of solving a linear problem on a minimum consumption of resources”, Sib. Zh. Vychisl. Mat., 12:3 (2009),  247–267  mathnet; Num. Anal. Appl., 2:3 (2009), 197–215  scopus
2008
23. V. M. Aleksandrov, “Sequential synthesis of the time-optimal control in real time”, Avtomat. i Telemekh., 2008, 8,  3–24  mathnet  mathscinet  zmath; Autom. Remote Control, 69:8 (2008), 1271–1288  isi  scopus
24. V. M. Aleksandrov, “Sequential synthesis of the optimal time control by liner systems with disturbances”, Sib. Zh. Vychisl. Mat., 11:3 (2008),  251–270  mathnet; Num. Anal. Appl., 1:3 (2008), 207–222
25. V. M. Aleksandrov, “Optimal Control in Real Time by a Linear System with Disturbance”, Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 8:3 (2008),  3–25  mathnet
2007
26. V. M. Aleksandrov, “Iterative method for computing time optimal control in real time mode”, Sib. Zh. Vychisl. Mat., 10:1 (2007),  1–28  mathnet
2003
27. V. M. Aleksandrov, “An iterative method for computation of time-optimal control of quasilinear systems”, Sib. Zh. Vychisl. Mat., 6:3 (2003),  227–247  mathnet  zmath
2000
28. V. M. Aleksandrov, “Numerical solution for linear time optimal control problem”, Fundam. Prikl. Mat., 6:1 (2000),  23–42  mathnet  mathscinet  zmath
1999
29. V. M. Aleksandrov, “Convergence of the method of sequential synthesis of time-optimal control”, Zh. Vychisl. Mat. Mat. Fiz., 39:10 (1999),  1650–1661  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:10 (1999), 1582–1593
30. V. M. Aleksandrov, “Sequential synthesis of time-optimal control”, Zh. Vychisl. Mat. Mat. Fiz., 39:9 (1999),  1464–1478  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:9 (1999), 1402–1415
31. V. M. Aleksandrov, “An approximate solution to the linear problem of minimizing resource consumption”, Zh. Vychisl. Mat. Mat. Fiz., 39:3 (1999),  418–430  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 39:3 (1999), 397–408
1998
32. V. M. Aleksandrov, “An approximate solution of the linear time-optimality problem”, Avtomat. i Telemekh., 1998, 12,  3–13  mathnet  mathscinet  zmath; Autom. Remote Control, 59:12 (1998), 1699–1707
33. V. M. Aleksandrov, “A numerical method for solving a linear time-optimal control problem”, Zh. Vychisl. Mat. Mat. Fiz., 38:6 (1998),  918–931  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 38:6 (1998), 881–893

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019