RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Habibullin, Ismagil Talgatovich

Total publications: 87 (86)
in MathSciNet: 61 (61)
in zbMATH: 32 (32)
in Web of Science: 55 (55)
in Scopus: 33 (33)
Cited articles: 69
Citations in Math-Net.Ru: 213
Citations in Web of Science: 348
Citations in Scopus: 240
Presentations: 1

Number of views:
This page:3288
Abstract pages:9744
Full texts:3039
References:1047
Professor
Doctor of physico-mathematical sciences (1996)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 3.01.1955
E-mail:
Keywords: dynamical systems, integrability, symmetry, inverse scattering transform method, soliton, initial boundary value problem, Korteweg–de Vries type equations.

Subject:

The problem of the classification of boundary conditions for nonlinear integrable differential equations preserving their integrability property was formulated and solved. An effective test of consistency of a boundary condition with the equation given was proposed. Methods of adapting the inverse scattering transform method for solving of initial boundary value problem are suggested.

Biography

Graduated from Faculty of Mathematics of the Bashkirian State University in 1977 (department of differential equations). Ph.D. thesis was defended in 1982. D.Sci. thesis was defended in 1996. A list of my works contains more than 50 titles.

   
Main publications:
  1. I. T. Habibullin, “Symmetries of boundary problems”, Phys. Let. A, 178 (1993), 369–375  crossref  mathscinet  adsnasa
  2. I. T. Khabibullin, “O zadache lineinogo sopryazheniya na okruzhnosti”, Matematicheskie zametki, 41:3 (1987), 342–347  mathnet  mathscinet  zmath
  3. I. T. Khabibullin, “Nachalno-kraevaya zadacha dlya uravneniya KdF na poluosi s odnorodnymi kraevymi usloviyami”, TMF, 130:1 (2002), 31–53  mathnet  mathscinet  zmath
  4. I. T. Habibullin, T. G. Kazakova, “Boundary conditions for integrable discrete chains”, J. Phys. A: Math. Gen., 34 (2001), 10369–10376  crossref  mathscinet  zmath  adsnasa
  5. I. T. Khabibullin, “Nachalno-kraevaya zadacha na poluosi dlya uravneniya MKdF”, Funkts. analiz i ego prilozh., 34:1 (2000), 65–75  mathnet  mathscinet  zmath

http://www.mathnet.ru/eng/person17529
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/237223
http://elibrary.ru/author_items.asp?authorid=136794

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2019
1. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds of hyperbolic integrable equations and their applications”, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, Moscow, 2019, 136–150  mathnet
2. I. T. Habibullin, A. R. Khakimova, “Discrete exponential type systems on a quad graph, corresponding to the affine Lie algebras $A^{(1)}_{N-1}$”, Journal of Physics A: Mathematical and Theoretical, 52:36 (2019), 365202 , 29 pp.  crossref  isi
3. I. T. Khabibullin, A. R. Khakimova, “Algoritm postroeniya pary Laksa i operatora rekursii dlya integriruemykh uravnenii”, Okeanologicheskie issledovaniya, 47:1 (2019), 123–126

   2018
4. I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theoret. and Math. Phys., 196:2 (2018), 1200–1216  mathnet  crossref  crossref  adsnasa  isi (cited: 3)  elib  scopus (cited: 3)
5. I. T. Habibullin, A. R. Khakimova,, “On the recursion operators for integrable equations”, Journal of Physics A: Mathematical and Theoretical, 51:42 (2018), https://doi.org/10.1088/1751-8121/aade08 , 22 pp.  crossref  isi (cited: 1)  scopus (cited: 1)
6. M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105  mathnet  crossref  isi  scopus

   2017
7. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theoret. and Math. Phys., 191:3 (2017), 793–810  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 5)  elib  scopus (cited: 4)
8. E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On one integrable discrete system”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 30–42  mathnet  mathscinet
9. I. T. Habibullin, M. N. Poptsova, “Integrable two-dimensional lattices. Characteristic Lie rings and classification”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 18–29  mathnet  mathscinet
10. Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 73 , 26 pp.  mathnet (cited: 2)  crossref  isi (cited: 1)  scopus (cited: 1)
11. A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Uravneniya matematicheskoi fiziki. Nelineinye integriruemye uravneniya, Seriya : Universitety Rossii, 2-e izd., ispr. i dop., M.: Izdatelstvo Yurait, 111123, g. Moskva, ul. Plekhanova, d.4a., 2017 , 375 pp., Uchebnoe posobie dlya bakalavriata i magistratury
12. I. T. Habibullin, A. R. Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, Journal of Physics A: Mathematical and Theoretical, 50 (2017), 305206 , 19 pp., arXiv: 1702.04533  crossref  zmath  isi (cited: 4)  scopus (cited: 4)

   2016
13. I. T. Khabibullin, M. N. Poptsova, “Integriruemye dvumerizovannye tsepochki. Kharakteristicheskie koltsa Li i klassifikatsiya.”, Ufimskaya matematicheskaya konferentsiya s mezhdunarodnym uchastiem, Sbornik tezisov (g. Ufa, 27–30 sentyabrya 2016 goda.), RITs BashGU., g. Ufa, 2016, 173–174
14. M. N. Poptsova, I. T. Habibullin, “Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation”, Ufa Math. Journal, 8:3 (2016), 109–121  mathnet  crossref  mathscinet  isi  elib  scopus (cited: 1)
15. I. T. Khabibullin, A. R. Khakimova, “Ob odnom metode postroeniya par Laksa dlya integriruemykh sistem”, Ufimskaya matematicheskaya konferentsiya s mezhdunarodnym uchastiem, sbornik tezisov (g. Ufa, 27–30 sentyabrya 2016 g.), RITs BashGU., g. Ufa, 2016, 175
16. I. Habibullin, N. Zheltukhina, “Discretization of Liouville type nonautonomous equations preserving integrals”, Journal of Nonlinear Mathematical Physics, 23:4 (2016), 620–642 , Taylor & Francis  crossref  mathscinet  isi (cited: 2)  scopus (cited: 2)
17. I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 035202 , 35 pp., arXiv: 1506.02563  crossref  zmath  isi (cited: 6)  scopus (cited: 7)

   2015
18. I. T. Habibullin, M. N. Poptsova, “Asymptotic diagonalization of the discrete Lax pair around singularities and conservation laws for dynamical systems”, Journal of Physics A: Mathematical and Theoretical, 48:11 (2015), 115203 , IOP Publishing  crossref  mathscinet  isi (cited: 3)  scopus (cited: 3)
19. R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, Journal of Physics A: Mathematical and Theoretical, 48:23 (2015), 235201 , IOP Publishing  crossref  mathscinet  isi (cited: 6)  scopus (cited: 6)

   2013
20. I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems”, Theoret. and Math. Phys., 177:3 (2013), 1655–1679  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 10)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 8)
21. I. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for (2+ 1)-dimensional lattices”, Physica Scripta, 87:6 (2013), 065005 , IOP Publishing  crossref  isi (cited: 2)  elib  scopus (cited: 3)

   2012
22. Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 62 , 33 pp., arXiv: 1109.1689  mathnet (cited: 9)  crossref  mathscinet  isi (cited: 8)  scopus (cited: 11)
23. A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufimsk. Mat. Zh., 4:3 (2012), 17–85  mathnet  mathscinet  elib
24. M. Gürses, A. V. Zhiber, I. T. Habibullin, “Characteristic Lie rings of differential equations”, Ufimsk. Mat. Zh., 4:1 (2012), 53–62  mathnet  elib
25. R. N. Garifullin, I. T. Habibullin, “Affine Lie algebras, Lax pairs and integrable discrete and continuous systems”, 2012, arXiv: 1205.6620
26. A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Moscow-Izhevsk: Institute of Computer Science, 2012  mathscinet

   2011
27. I. T. Habibullin, E. V. Gudkova, “An algebraic method for classifying S-integrable discrete models”, Theoret. and Math. Phys., 167:3 (2011), 751–761  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 2)  elib  scopus (cited: 2)
28. I. T. Habibullin, E. V. Gudkova, “Classification of integrable discrete Klein–Gordon models”, Physica Scripta, 83:4 (2011), 045003 , IOP Publishing  crossref  isi (cited: 5)  elib (cited: 2)  scopus (cited: 4)
29. I. Habibullin, K. Zheltukhin, M. Yangubaeva, “Cartan matrices and integrable lattice Toda field equations”, Journal of Physics A: Mathematical and Theoretical, 44:46 (2011), 465202 , IOP Publishing  crossref  mathscinet  isi (cited: 4)  scopus (cited: 4)
30. I. Habibullin, N. Zheltukhina, A. Sakieva, “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, Journal of Mathematical Physics, 52:9 (2011), 093507  crossref  mathscinet  zmath  isi (cited: 8)  scopus (cited: 8)
31. R. N. Garifullin, E. V. Gudkova, I. T. Habibullin, “Method for searching higher symmetries for quad-graph equations”, Journal of Physics A: Mathematical and Theoretical, 44:32 (2011), 325202 , IOP Publishing  crossref  mathscinet  isi (cited: 15)  scopus (cited: 14)
32. L. A. Kalyakin, V. Yu. Novokshenov, I. T. Habibullin, E. G. Ekomasov, A. T. Kharisov, “In memory of Miniakhat Asgatovich Shamsutdinov”, Ufimsk. Mat. Zh., 3:1 (2011), 122–123  mathnet

   2010
33. N. A. Zheltukhina, A. U. Sakieva, I. T. Habibullin, “Characteristic Lie algebra and Darboux integrable discrete chains”, Ufimsk. Mat. Zh., 2:4 (2010), 39–51  mathnet  zmath  elib
34. I. Habibullin, N. Zheltukhina, A. Sakieva, “On Darboux-integrable semi-discrete chains”, Journal of Physics A: Mathematical and Theoretical, 43:43 (2010), 434017 , IOP Publishing  crossref  mathscinet  isi (cited: 10)  scopus (cited: 10)

   2009
35. M. A. Shamsutdinov, I. T. Khabibullin, A. T. Kharisov, A. P. Tankeyev, “Dynamics of magnetic kinks in exchange-coupled ferromagnetic layers”, The Physics of Metals and Metallography, 108:4 (2009), 327–340 , Sp Maik Nauka/Interperiodica  crossref  isi (cited: 1)  scopus (cited: 2)
36. I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form t1x=tx+d„t , t1…”, Journal of Mathematical Physics, 50:102710 (2009), 1–23 , American Institute of Physics  mathscinet

   2008
37. I. Habibullin, A. Kundu, “Quantum and classical integrable sine-Gordon model with defect”, Nuclear Physics B, 795:3 (2008), 549–568 , Elsevier  crossref  mathscinet  isi (cited: 38)  elib (cited: 11)  scopus (cited: 41)
38. M. Gürses, I. Habibullin, K. Zheltukhin, “Hydrodynamic type integrable equations on a segment and a half-line”, Journal of Mathematical Physics, 49:10 (2008), 102704 , AIP Publishing  crossref  mathscinet  isi  scopus
39. I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, Journal of Mathematical Physics, 49:102702 (2008), 1–39 , AIP  mathscinet
40. I. Habibullin, A. Pekcan, N. Zheltukhina, “On Some Algebraic Properties of Semi-Discrete Hyperbolic Type Equations”, Turkish J. Math., 32:3 (2008), 277–292 , Tubitak  mathscinet  isi (cited: 2)  elib (cited: 1)

   2007
41. I. T. Habibullin, A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models”, Theoret. and Math. Phys., 151:3 (2007), 781–790  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 14)  elib (cited: 10)  elib (cited: 10)  scopus (cited: 12)
42. M. Gurses, I. Habibullin, K. Zheltukhin, “Integrable boundary value problems for elliptic type Toda lattice in a disk”, Journal of Mathematical Physics, 48:10 (2007), 102702 , American Institute of Physics  crossref  mathscinet  isi (cited: 4)  scopus (cited: 3)
43. I. Habibullin, “Characteristic algebras of discrete equations”, Difference equations, special functions and orthogonal polynomials, 2007, 249–257  crossref  mathscinet  zmath  isi (cited: 2)

   2006
44. I. T. Habibullin, “C-Series Discrete Chains”, Theoret. and Math. Phys., 146:2 (2006), 170–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  elib  scopus (cited: 5)

   2005
45. Ismagil T. Habibullin, “Characteristic Algebras of Fully Discrete Hyperbolic Type Equations”, SIGMA, 1 (2005), 23 , 9 pp., arXiv: nlin.SI/0506027  mathnet (cited: 28)  crossref  mathscinet  zmath  isi (cited: 26)
46. I. T. Habibullin, “Truncations of Toda chains and the reduction problem”, Theoret. and Math. Phys., 143:1 (2005), 515–528  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 4)  elib

   2004
47. I. T. Habibullin, E. V. Gudkova, “Boundary Conditions for Multidimensional Integrable Equations”, Funct. Anal. Appl., 38:2 (2004), 138–148  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 7)
48. E. V. Gudkova, I. T. Habibullin, “Kadomtsev–Petviashvili Equation on the Half-Plane”, Theoret. and Math. Phys., 140:2 (2004), 1086–1094  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 3)
49. I. T. Habibullin, “Multidimensional integrable boundary problems”, arXiv preprint nlin/0401028, 2004

   2002
50. I. T. Habibullin, “Integrable initial boundary value problems”, Matem. fiz., anal., geom., 9:2 (2002), 261–267  mathnet  mathscinet  zmath
51. I. T. Habibullin, “Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions”, Theoret. and Math. Phys., 130:1 (2002), 25–44  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 8)

   2001
52. I. T. Habibullin, T. G. Kazakova, “Boundary conditions for integrable discrete chains”, Journal of Physics A: Mathematical and General, 34:48 (2001), 10369 , IOP Publishing  crossref  mathscinet  isi (cited: 9)  scopus (cited: 9)

   2000
53. I. T. Habibullin, “An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation”, Funct. Anal. Appl., 34:1 (2000), 52–59  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 1)
54. I. T. Habibullin, A. N. Vil’danov, “Integrable boundary conditions for nonlinear lattices”, CRM Proceedings and Lecture Notes, 25, 2000, 173–80  mathscinet
55. I. T. Habibullin, A. N. Vil’danov, “Boundary conditions consistent with LA pairs”, Proc. Intl. Conf. Mogran 2000, 2000, 80–82

   1999
56. I. T. Habibullin, “KdV equation on a half-line with the zero boundary condition”, Theoret. and Math. Phys., 119:3 (1999), 712–718  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib (cited: 6)

   1998
57. I. T. Habibullin, “Sine-Gordon equation on the semi-axis”, Theoret. and Math. Phys., 114:1 (1998), 90–98  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)
58. I. Habibullin, “Integrable boundary conditions for nonlinear partial differential equations”, Exactly Solvable Models in Mathematical Physics, 1998

   1997
59. V. E. Adler, I. T. Habibullin, “Boundary Conditions for Integrable Lattices”, Funct. Anal. Appl., 31:2 (1997), 75–85  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  elib (cited: 4)
60. V. E. Adler, I. T. Habibullin, A. B. Shabat, “Boundary value problem for the KdV equation on a half-line”, Theoret. and Math. Phys., 110:1 (1997), 78–90  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 11)
61. V. Adler, B. Gürel, M. Gürses, I. Habibullin, “Boundary conditions for integrable equations”, Journal of Physics A: Mathematical and General, 30:10 (1997), 3505 , IOP Publishing  crossref  mathscinet  isi (cited: 25)  scopus (cited: 26)
62. B. Gürel, I. Habibullin, “Boundary conditions for two-dimensional integrable chains”, Physics Letters A, 233:1 (1997), 68–72 , North-Holland  mathscinet  isi (cited: 2)

   1996
63. S. I. Svinolupov, I. T. Habibullin, “Integrable boundary conditions for many-component burgers equations”, Math. Notes, 60:6 (1996), 671–680  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)
64. I. T. Habibullin, VV. Sokolov, R. I. Yamilov, “Multi-component integrable systems and nonassociative structures”, Nonlinear Physics: theory and experiment World Scientific Publishing, 1996 , Dtic Document  mathscinet
65. I. T. Habibullin, “Symmetry approach in boundary value problems”, Journal of Nonlinear Mathematical Physics, 3:1-2 (1996), 147–151 , Taylor & Francis Group  crossref  mathscinet
66. T. B. Gürel, M. Gürses, I. Habibullin, “Integrable boundary conditions for evolution equations”, Proc. Workshop on Nonlinear Physics: Theory and Experiment (Lecce, 1995), 1996

   1995
67. B. Gürel, M. Gürses, I. Habibullin, “Boundary value problems for integrable equations compatible with the symmetry algebra”, Journal of Mathematical Physics, 36:12 (1995), 6809–6821 , AIP Publishing  crossref  mathscinet  isi (cited: 14)
68. V. E. Adler, I. T. Habibullin, “Integrable boundary conditions for the Toda lattice”, Journal of Physics A: Mathematical and General, 28:23 (1995), 6717 , IOP Publishing  crossref  mathscinet  isi (cited: 11)  scopus (cited: 11)
69. I. T. Habibullin, S. I. Svinolupov, “Integrable boundary value problems for the multicomponent Schrödinger equations”, Physica D: Nonlinear Phenomena, 87:1 (1995), 134–139 , North-Holland  crossref  mathscinet  isi (cited: 7)  scopus (cited: 8)
70. I. T. Habibullin, “Boundary conditions for integrable chains”, Physics Letters A, 207:5 (1995), 263–268 , Elsevier  crossref  mathscinet  isi (cited: 8)  scopus (cited: 8)

   1994
71. B. Gürel, M. Gürses, I. Habibullin, “Boundary value problems compatible with symmetries”, Physics Letters A, 190:3 (1994), 231–237 , North-Holland  mathscinet  isi (cited: 13)

   1993
72. B. I. Suleimanov, I. T. Habibullin, “Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes”, Theoret. and Math. Phys., 97:2 (1993), 1250–1258  mathnet  crossref  mathscinet  zmath  isi (cited: 2)
73. I. T. Habibullin, “Boundary conditions for nonlinear equations compatible with integrability”, Theoret. and Math. Phys., 96:1 (1993), 845–853  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
74. I. T. Habibullin, “Symmetries of boundary problems”, Physics Letters A, 178:5 (1993), 369–375 , Elsevier  crossref  mathscinet  isi (cited: 15)  scopus (cited: 12)

   1992
75. I. T. Habibullin, “Boundary-value problems on the half-plane for the Ishimori equation that are compatible with the inverse scattering method”, Theoret. and Math. Phys., 91:3 (1992), 581–590  mathnet  crossref  mathscinet  zmath  isi (cited: 2)

   1991
76. I. T. Habibullin, “The Bäcklund transformation and integrable initial boundary value problems”, Math. Notes, 49:4 (1991), 18–23  mathnet  crossref  mathscinet  zmath
77. I. T. Habibullin, “Integrable initial-boundary-value problems”, Theoret. and Math. Phys., 86:1 (1991), 28–36  mathnet  crossref  mathscinet  zmath  isi (cited: 7)

   1990
78. I. T. Habibullin, A. G. Shagalov, “Numerical realization of the inverse scattering method”, Theoret. and Math. Phys., 83:3 (1990), 565–573  mathnet  crossref  mathscinet  zmath  isi (cited: 5)
79. I. T. Habibullin, “Backlund transformation and integrable boundary-initial value problems”, Nonlinear world: IV International Workshop on Nonlinear and Turbulent Processes in Physics, 1, 1990, 130  mathscinet  zmath

   1989
80. I. T. Habibullin, A. G. Shagalov, “Numerical solution of the Riemann problem of analytic conjugation”, U.S.S.R. Comput. Math. Math. Phys., 29:2 (1989), 39–45  mathnet  crossref  mathscinet  zmath

   1987
81. I. T. Habibullin, “Problem of linear conjugation on a circumference”, Math. Notes, 41:3 (1987), 195–198  mathnet  crossref  mathscinet  zmath  isi (cited: 1)

   1985
82. I. T. Habibullin, “Discrete Zakharov–Shabat systems and integrable equations”, Differential geometry, Lie groups and mechanics. Part VII, Zap. Nauchn. Sem. LOMI, 146, “Nauka”, Leningrad. Otdel., Leningrad, 1985, 137–146  mathnet  mathscinet  zmath

   1981
83. V. Yu. Novokshenov, I. T. Habibullin, Sov. Math. Doklady, 23, no. 2, 1981, 304–307
84. V. Yu. Novokshenov, I. T. Habibullin, “Nonlinear differential-difference schemes integrable by the method of the inverse scattering problem. Asymptotics of the solution for $t\to\infty$”, Dokl. Akad. Nauk SSSR, 257:3 (1981), 543–547  mathnet  mathscinet  zmath

   1979
85. I. T. Habibullin, “The Inverse Scattering Problem For Difference Equations”, Soviet Math. Dokl., 20:6 (1979), 1233–1236 , Mezhdunarodnaya Kniga  mathscinet
86. I. T. Khabibullin, “Obratnaya zadacha rasseyaniya dlya raznostnykh uravnenii”, Doklady AN SSSR, M., 1079, t.249, # 1, s.67-70., 249:1 (1979), 67-70  mathscinet
87. I. T. Habibullin, “The inverse scattering problem for difference equations”, Dokl. Akad. Nauk SSSR, 249:1 (1979), 67–70  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. Cartan matrices and integrable lattice Toda field equations
I. T. Habibullin
International conference "Geometrical Methods in Mathematical Physics"
December 16, 2011 16:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019