RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Habibullin, Ismagil Talgatovich

Total publications: 94 (93)
in MathSciNet: 69 (69)
in zbMATH: 34 (34)
in Web of Science: 60 (60)
in Scopus: 42 (42)
Cited articles: 73
Citations in Math-Net.Ru: 227
Citations in Web of Science: 393
Citations in Scopus: 290
Presentations: 1

Number of views:
This page:4025
Abstract pages:11101
Full texts:3972
References:1198
Professor
Doctor of physico-mathematical sciences (1996)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 3.01.1955
E-mail:
Keywords: dynamical systems, higher symmetries, inverse scattering transform method, characteristic algebras initial boundary value problem, Korteweg–de Vries type equations.

Subject:

Integrable nonlinear equations of mathematical physics.

Biography

Graduated from Faculty of Mathematics of the Bashkirian State University in 1977 (department of differential equations). Ph.D. thesis (supervisor A.B.Shabat) was defended in 1982. D.Sci. thesis was defended in 1996. Since 1993 he has been working at the Institute of Mathematics of the Ufa Federal Research Center of the Russian Academy of Sciences, at the present time - Head of the Department of Mathematical Physics.

   
Main publications:
  1. I. T. Habibullin, “Symmetries of boundary problems”, Phys. Let. A, 178 (1993), 369–375  crossref  mathscinet  adsnasa
  2. I. T. Khabibullin, “O zadache lineinogo sopryazheniya na okruzhnosti”, Matematicheskie zametki, 41:3 (1987), 342–347  mathnet  mathscinet  zmath
  3. I. T. Khabibullin, “Nachalno-kraevaya zadacha dlya uravneniya KdF na poluosi s odnorodnymi kraevymi usloviyami”, TMF, 130:1 (2002), 31–53  mathnet  mathscinet  zmath
  4. I. T. Habibullin, T. G. Kazakova, “Boundary conditions for integrable discrete chains”, J. Phys. A: Math. Gen., 34 (2001), 10369–10376  crossref  mathscinet  zmath  adsnasa
  5. I. T. Khabibullin, “Nachalno-kraevaya zadacha na poluosi dlya uravneniya MKdF”, Funkts. analiz i ego prilozh., 34:1 (2000), 65–75  mathnet  mathscinet  zmath

http://www.mathnet.ru/eng/person17529
http://scholar.google.com/citations?user=bfG6sVgAAAAJ&hl=en
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/237223
http://elibrary.ru/author_items.asp?authorid=136794
http://orcid.org/0000-0003-4658-9175
http://www.researcherid.com/rid/B-1820-2016
http://www.scopus.com/authid/detail.url?authorId=55951252400

Full list of publications:
| scientific publications | by years | by types | by times cited in WoS | by times cited in Scopus | common list |



   2020
1. I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581  mathnet  crossref  crossref  mathscinet  isi  elib  scopus (cited: 1)
2. I. T. Habibullin, A. R. Khakimova, “Integrable Boundary Conditions for the Hirota-Miwa Equation and Lie Algebras”, Journal of Nonlinear Mathematical Physics, 27:3 (2020), 393–413  crossref  mathscinet  zmath  isi  scopus
3. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and separation of the variables for integrable chains”, Journal of Physics A: Mathematical and Theoretical, 53:38 (2020), 385202 , 17 pp.  crossref  isi
4. E. V. Ferapontov, I. T. Habibullin, M. N. Kuznetsova, V. S. Novikov, “On a class of 2D integrable lattice equations”, Journal of Mathematical Physics, 61:7 (2020), 073505 , 15 pp.  crossref  isi  scopus
5. I. T. Habibullin, M. N. Kuznetsova, A. U. Sakieva,, “Integrability conditions for two-dimensional Toda-like equations”, Journal of Physics A: Mathematical and Theoretical, 53:39 (2020), 395203 , 25 pp.  crossref  isi (cited: 2)  scopus (cited: 2)

   2019
6. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds of hyperbolic integrable equations and their applications”, Complex Analysis. Mathematical Physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 162, VINITI, Moscow, 2019, 136–150  mathnet  mathscinet
7. I. T. Habibullin, A. R. Khakimova, “Discrete exponential type systems on a quad graph, corresponding to the affine Lie algebras $A^{(1)}_{N-1}$”, Journal of Physics A: Mathematical and Theoretical, 52:36 (2019), 365202 , 29 pp.  crossref  mathscinet  isi (cited: 1)  scopus (cited: 1)
8. I. T. Khabibullin, A. R. Khakimova, “Algoritm postroeniya pary Laksa i operatora rekursii dlya integriruemykh uravnenii”, Okeanologicheskie issledovaniya, 47:1 (2019), 123–126
9. E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On One Integrable Discrete System”, Journal of Mathematical Sciences, 241:4 (2019), 409–422  crossref  zmath  scopus
10. I. T. Khabibullin, M. N. Poptsova, “Integrable two-dimensional lattices. Characteristic Lie rings and classification.”, Journal of Mathematical Sciences, 241:4 (2019), 396–4008  crossref  scopus

   2018
11. I. T. Habibullin, A. R. Khakimova, “A direct algorithm for constructing recursion operators and Lax pairs for integrable models”, Theoret. and Math. Phys., 196:2 (2018), 1200–1216  mathnet  crossref  crossref  adsnasa  isi (cited: 3)  elib  scopus (cited: 3)
12. I. T. Habibullin, A. R. Khakimova,, “On the recursion operators for integrable equations”, Journal of Physics A: Mathematical and Theoretical, 51:42 (2018), https://doi.org/10.1088/1751-8121/aade08 , 22 pp.  crossref  isi (cited: 1)  scopus (cited: 2)
13. M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105  mathnet  crossref  mathscinet  isi (cited: 2)  scopus (cited: 2)

   2017
14. I. T. Habibullin, A. R. Khakimova, “Invariant manifolds and Lax pairs for integrable nonlinear chains”, Theoret. and Math. Phys., 191:3 (2017), 793–810  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 5)  elib  scopus (cited: 5)
15. E. V. Pavlova, I. T. Habibullin, A. R. Khakimova, “On one integrable discrete system”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 30–42  mathnet  mathscinet
16. I. T. Habibullin, M. N. Poptsova, “Integrable two-dimensional lattices. Characteristic Lie rings and classification”, Differential equations. Mathematical physics, Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. Pril. Temat. Obz., 140, VINITI, M., 2017, 18–29  mathnet  mathscinet
17. Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 73 , 26 pp.  mathnet (cited: 4)  crossref  isi (cited: 4)  scopus (cited: 4)
18. A. V. Zhiber, R. D. Murtazina, I. T. Khabibullin, A. B. Shabat, Uravneniya matematicheskoi fiziki. Nelineinye integriruemye uravneniya, Seriya : Universitety Rossii, 2-e izd., ispr. i dop., M.: Izdatelstvo Yurait, 111123, g. Moskva, ul. Plekhanova, d.4a., 2017 , 375 pp., Uchebnoe posobie dlya bakalavriata i magistratury
19. I. T. Habibullin, A. R. Khakimova, “On a method for constructing the Lax pairs for integrable models via a quadratic ansatz”, Journal of Physics A: Mathematical and Theoretical, 50 (2017), 305206 , 19 pp., arXiv: 1702.04533  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 5)

   2016
20. I. T. Khabibullin, M. N. Poptsova, “Integriruemye dvumerizovannye tsepochki. Kharakteristicheskie koltsa Li i klassifikatsiya.”, Ufimskaya matematicheskaya konferentsiya s mezhdunarodnym uchastiem, Sbornik tezisov (g. Ufa, 27–30 sentyabrya 2016 goda.), RITs BashGU., g. Ufa, 2016, 173–174
21. M. N. Poptsova, I. T. Habibullin, “Symmetries and conservation laws for a two-component discrete potentiated Korteweg–de Vries equation”, Ufa Math. Journal, 8:3 (2016), 109–121  mathnet  crossref  mathscinet  isi (cited: 1)  elib  elib  scopus (cited: 1)
22. I. T. Khabibullin, A. R. Khakimova, “Ob odnom metode postroeniya par Laksa dlya integriruemykh sistem”, Ufimskaya matematicheskaya konferentsiya s mezhdunarodnym uchastiem, sbornik tezisov (g. Ufa, 27–30 sentyabrya 2016 g.), RITs BashGU., g. Ufa, 2016, 175
23. I. Habibullin, N. Zheltukhina, “Discretization of Liouville type nonautonomous equations preserving integrals”, Journal of Nonlinear Mathematical Physics, 23:4 (2016), 620–642 , Taylor & Francis  crossref  mathscinet  isi (cited: 2)  scopus (cited: 2)
24. I. T. Habibullin, A. R. Khakimova, M. N. Poptsova, “On a method for constructing the Lax pairs for nonlinear integrable equations”, Journal of Physics A: Mathematical and Theoretical, 49 (2016), 035202 , 35 pp., arXiv: 1506.02563  crossref  mathscinet  zmath  isi (cited: 6)  scopus (cited: 7)

   2015
25. I. T. Habibullin, M. N. Poptsova, “Asymptotic diagonalization of the discrete Lax pair around singularities and conservation laws for dynamical systems”, Journal of Physics A: Mathematical and Theoretical, 48:11 (2015), 115203 , IOP Publishing  crossref  mathscinet  isi (cited: 3)  scopus (cited: 4)
26. R. N. Garifullin, I. T. Habibullin, R. I. Yamilov, “Peculiar symmetry structure of some known discrete nonautonomous equations”, Journal of Physics A: Mathematical and Theoretical, 48:23 (2015), 235201 , IOP Publishing  crossref  mathscinet  isi (cited: 7)  scopus (cited: 7)

   2013
27. I. T. Habibullin, M. V. Yangubaeva, “Formal diagonalization of a discrete Lax operator and conservation laws and symmetries of dynamical systems”, Theoret. and Math. Phys., 177:3 (2013), 1655–1679  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 11)  elib (cited: 4)  elib (cited: 4)  scopus (cited: 10)
28. I. Habibullin, “Characteristic Lie rings, finitely-generated modules and integrability conditions for (2+ 1)-dimensional lattices”, Physica Scripta, 87:6 (2013), 065005 , IOP Publishing  crossref  isi (cited: 4)  elib  scopus (cited: 5)

   2012
29. Rustem Garifullin, Ismagil Habibullin, Marina Yangubaeva, “Affine and finite Lie algebras and integrable Toda field equations on discrete space-time”, SIGMA, 8 (2012), 62 , 33 pp., arXiv: 1109.1689  mathnet (cited: 9)  crossref  mathscinet  isi (cited: 9)  scopus (cited: 13)
30. A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Ufimsk. Mat. Zh., 4:3 (2012), 17–85  mathnet  mathscinet  elib
31. M. Gürses, A. V. Zhiber, I. T. Habibullin, “Characteristic Lie rings of differential equations”, Ufimsk. Mat. Zh., 4:1 (2012), 53–62  mathnet  elib
32. R. N. Garifullin, I. T. Habibullin, “Affine Lie algebras, Lax pairs and integrable discrete and continuous systems”, 2012, arXiv: 1205.6620
33. A. V. Zhiber, R. D. Murtazina, I. T. Habibullin, A. B. Shabat, “Characteristic Lie rings and integrable models in mathematical physics”, Moscow-Izhevsk: Institute of Computer Science, 2012  mathscinet

   2011
34. I. T. Habibullin, E. V. Gudkova, “An algebraic method for classifying S-integrable discrete models”, Theoret. and Math. Phys., 167:3 (2011), 751–761  mathnet  crossref  crossref  mathscinet  adsnasa  isi (cited: 2)  elib  scopus (cited: 2)
35. I. T. Habibullin, E. V. Gudkova, “Classification of integrable discrete Klein–Gordon models”, Physica Scripta, 83:4 (2011), 045003 , IOP Publishing  crossref  isi (cited: 5)  elib (cited: 2)  scopus (cited: 4)
36. I. Habibullin, K. Zheltukhin, M. Yangubaeva, “Cartan matrices and integrable lattice Toda field equations”, Journal of Physics A: Mathematical and Theoretical, 44:46 (2011), 465202 , IOP Publishing  crossref  mathscinet  isi (cited: 4)  scopus (cited: 4)
37. I. Habibullin, N. Zheltukhina, A. Sakieva, “Discretization of hyperbolic type Darboux integrable equations preserving integrability”, Journal of Mathematical Physics, 52:9 (2011), 093507  crossref  mathscinet  zmath  isi (cited: 8)  scopus (cited: 8)
38. R. N. Garifullin, E. V. Gudkova, I. T. Habibullin, “Method for searching higher symmetries for quad-graph equations”, Journal of Physics A: Mathematical and Theoretical, 44:32 (2011), 325202 , IOP Publishing  crossref  mathscinet  isi (cited: 15)  scopus (cited: 14)

   2010
39. N. A. Zheltukhina, A. U. Sakieva, I. T. Habibullin, “Characteristic Lie algebra and Darboux integrable discrete chains”, Ufimsk. Mat. Zh., 2:4 (2010), 39–51  mathnet  zmath  elib
40. I. Habibullin, N. Zheltukhina, A. Sakieva, “On Darboux-integrable semi-discrete chains”, Journal of Physics A: Mathematical and Theoretical, 43:43 (2010), 434017 , IOP Publishing  crossref  mathscinet  isi (cited: 10)  scopus (cited: 10)

   2009
41. M. A. Shamsutdinov, I. T. Khabibullin, A. T. Kharisov, A. P. Tankeyev, “Dynamics of magnetic kinks in exchange-coupled ferromagnetic layers”, The Physics of Metals and Metallography, 108:4 (2009), 327–340 , Sp Maik Nauka/Interperiodica  crossref  isi (cited: 1)  scopus (cited: 2)
42. I. Habibullin, N. Zheltukhina, A. Pekcan, “Complete list of Darboux integrable chains of the form t1x=tx+d„t , t1…”, Journal of Mathematical Physics, 50:102710 (2009), 1–23 , American Institute of Physics  mathscinet

   2008
43. I. Habibullin, A. Kundu, “Quantum and classical integrable sine-Gordon model with defect”, Nuclear Physics B, 795:3 (2008), 549–568 , Elsevier  crossref  mathscinet  isi (cited: 39)  elib (cited: 11)  scopus (cited: 42)
44. M. Gürses, I. Habibullin, K. Zheltukhin, “Hydrodynamic type integrable equations on a segment and a half-line”, Journal of Mathematical Physics, 49:10 (2008), 102704 , AIP Publishing  crossref  mathscinet  isi  scopus
45. I. Habibullin, N. Zheltukhina, A. Pekcan, “On the classification of Darboux integrable chains”, Journal of Mathematical Physics, 49:102702 (2008), 1–39 , AIP  mathscinet
46. I. Habibullin, A. Pekcan, N. Zheltukhina, “On Some Algebraic Properties of Semi-Discrete Hyperbolic Type Equations”, Turkish J. Math., 32:3 (2008), 277–292 , Tubitak  mathscinet  isi (cited: 3)  elib (cited: 1)

   2007
47. I. T. Habibullin, A. Pekcan, “Characteristic Lie algebra and classification of semidiscrete models”, Theoret. and Math. Phys., 151:3 (2007), 781–790  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 16)  elib (cited: 10)  elib (cited: 10)  scopus (cited: 14)
48. M. Gurses, I. Habibullin, K. Zheltukhin, “Integrable boundary value problems for elliptic type Toda lattice in a disk”, Journal of Mathematical Physics, 48:10 (2007), 102702 , American Institute of Physics  crossref  mathscinet  isi (cited: 4)  scopus (cited: 3)
49. I. Habibullin, “Characteristic algebras of discrete equations”, Difference equations, special functions and orthogonal polynomials, 2007, 249–257  crossref  mathscinet  zmath  isi (cited: 2)

   2006
50. I. T. Habibullin, “C-Series Discrete Chains”, Theoret. and Math. Phys., 146:2 (2006), 170–182  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  elib  scopus (cited: 5)

   2005
51. Ismagil T. Habibullin, “Characteristic Algebras of Fully Discrete Hyperbolic Type Equations”, SIGMA, 1 (2005), 23 , 9 pp., arXiv: nlin.SI/0506027  mathnet (cited: 30)  crossref  mathscinet  zmath  isi (cited: 27)
52. I. T. Habibullin, “Truncations of Toda chains and the reduction problem”, Theoret. and Math. Phys., 143:1 (2005), 515–528  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)  elib

   2004
53. I. T. Habibullin, E. V. Gudkova, “Boundary Conditions for Multidimensional Integrable Equations”, Funct. Anal. Appl., 38:2 (2004), 138–148  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 8)  scopus (cited: 7)
54. E. V. Gudkova, I. T. Habibullin, “Kadomtsev–Petviashvili Equation on the Half-Plane”, Theoret. and Math. Phys., 140:2 (2004), 1086–1094  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 5)
55. I. T. Habibullin, “Multidimensional integrable boundary problems”, arXiv preprint nlin/0401028, 2004  zmath

   2002
56. I. T. Habibullin, “Integrable initial boundary value problems”, Matem. fiz., anal., geom., 9:2 (2002), 261–267  mathnet  mathscinet  zmath
57. I. T. Habibullin, “Initial Boundary Value Problem for the KdV Equation on a Semiaxis with Homogeneous Boundary Conditions”, Theoret. and Math. Phys., 130:1 (2002), 25–44  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 8)

   2001
58. I. T. Habibullin, T. G. Kazakova, “Boundary conditions for integrable discrete chains”, Journal of Physics A: Mathematical and General, 34:48 (2001), 10369 , IOP Publishing  crossref  mathscinet  isi (cited: 10)  scopus (cited: 10)

   2000
59. I. T. Habibullin, “An Initial-Boundary Value Problem on the Half-Line for the MKdV Equation”, Funct. Anal. Appl., 34:1 (2000), 52–59  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib (cited: 1)
60. I. T. Habibullin, A. N. Vil’danov, “Integrable boundary conditions for nonlinear lattices”, CRM Proceedings and Lecture Notes, 25, 2000, 173–80  crossref  mathscinet
61. I. T. Habibullin, A. N. Vil’danov, “Boundary conditions consistent with LA pairs”, Proc. Intl. Conf. Mogran 2000, 2000, 80–82

   1999
62. I. T. Habibullin, “KdV equation on a half-line with the zero boundary condition”, Theoret. and Math. Phys., 119:3 (1999), 712–718  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)  elib (cited: 6)

   1998
63. I. T. Habibullin, “Sine-Gordon equation on the semi-axis”, Theoret. and Math. Phys., 114:1 (1998), 90–98  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)
64. I. Habibullin, “Integrable boundary conditions for nonlinear partial differential equations”, Exactly Solvable Models in Mathematical Physics, 1998

   1997
65. V. E. Adler, I. T. Habibullin, “Boundary Conditions for Integrable Lattices”, Funct. Anal. Appl., 31:2 (1997), 75–85  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 7)  elib (cited: 4)
66. V. E. Adler, I. T. Habibullin, A. B. Shabat, “Boundary value problem for the KdV equation on a half-line”, Theoret. and Math. Phys., 110:1 (1997), 78–90  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 11)
67. V. Adler, B. Gürel, M. Gürses, I. Habibullin, “Boundary conditions for integrable equations”, Journal of Physics A: Mathematical and General, 30:10 (1997), 3505 , IOP Publishing  crossref  mathscinet  isi (cited: 26)  scopus (cited: 28)
68. B. Gürel, I. Habibullin, “Boundary conditions for two-dimensional integrable chains”, Physics Letters A, 233:1 (1997), 68–72 , North-Holland  mathscinet  isi (cited: 3)

   1996
69. S. I. Svinolupov, I. T. Habibullin, “Integrable boundary conditions for many-component burgers equations”, Math. Notes, 60:6 (1996), 671–680  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)
70. I. T. Habibullin, VV. Sokolov, R. I. Yamilov, “Multi-component integrable systems and nonassociative structures”, Nonlinear Physics: theory and experiment World Scientific Publishing, 1996 , Dtic Document  mathscinet
71. I. T. Habibullin, “Symmetry approach in boundary value problems”, Journal of Nonlinear Mathematical Physics, 3:1-2 (1996), 147–151 , Taylor & Francis Group  crossref  mathscinet  scopus (cited: 7)
72. T. B. Gürel, M. Gürses, I. Habibullin, “Integrable boundary conditions for evolution equations”, Proc. Workshop on Nonlinear Physics: Theory and Experiment (Lecce, 1995), 1996

   1995
73. B. Gürel, M. Gürses, I. Habibullin, “Boundary value problems for integrable equations compatible with the symmetry algebra”, Journal of Mathematical Physics, 36:12 (1995), 6809–6821 , AIP Publishing  crossref  mathscinet  isi (cited: 15)  scopus (cited: 16)
74. V. E. Adler, I. T. Habibullin, “Integrable boundary conditions for the Toda lattice”, Journal of Physics A: Mathematical and General, 28:23 (1995), 6717 , IOP Publishing  crossref  mathscinet  isi (cited: 11)  scopus (cited: 11)
75. I. T. Habibullin, S. I. Svinolupov, “Integrable boundary value problems for the multicomponent Schrödinger equations”, Physica D: Nonlinear Phenomena, 87:1 (1995), 134–139 , North-Holland  crossref  mathscinet  isi (cited: 7)  scopus (cited: 8)
76. I. T. Habibullin, “Boundary conditions for integrable chains”, Physics Letters A, 207:5 (1995), 263–268 , Elsevier  crossref  mathscinet  isi (cited: 9)  scopus (cited: 9)

   1994
77. B. Gürel, M. Gürses, I. Habibullin, “Boundary value problems compatible with symmetries”, Physics Letters A, 190:3 (1994), 231–237 , North-Holland  mathscinet  isi (cited: 13)

   1993
78. B. I. Suleimanov, I. T. Habibullin, “Symmetries of Kadomtsev–Petviashvili equation, isomonodromic deformations, and nonlinear generalizations of the special functions of wave catastrophes”, Theoret. and Math. Phys., 97:2 (1993), 1250–1258  mathnet  crossref  mathscinet  zmath  isi (cited: 2)
79. I. T. Habibullin, “Boundary conditions for nonlinear equations compatible with integrability”, Theoret. and Math. Phys., 96:1 (1993), 845–853  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
80. I. T. Habibullin, “Symmetries of boundary problems”, Physics Letters A, 178:5 (1993), 369–375 , Elsevier  crossref  mathscinet  isi (cited: 15)  scopus (cited: 12)

   1992
81. I. T. Habibullin, “Boundary-value problems on the half-plane for the Ishimori equation that are compatible with the inverse scattering method”, Theoret. and Math. Phys., 91:3 (1992), 581–590  mathnet  crossref  mathscinet  zmath  isi (cited: 2)

   1991
82. I. T. Habibullin, “The Bäcklund transformation and integrable initial boundary value problems”, Math. Notes, 49:4 (1991), 18–23  mathnet  crossref  mathscinet  zmath
83. I. T. Habibullin, “Integrable initial-boundary-value problems”, Theoret. and Math. Phys., 86:1 (1991), 28–36  mathnet  crossref  mathscinet  zmath  isi (cited: 12)

   1990
84. I. T. Habibullin, A. G. Shagalov, “Numerical realization of the inverse scattering method”, Theoret. and Math. Phys., 83:3 (1990), 565–573  mathnet  crossref  mathscinet  zmath  isi (cited: 5)
85. I. T. Habibullin, “Backlund transformation and integrable boundary-initial value problems”, Nonlinear world: IV International Workshop on Nonlinear and Turbulent Processes in Physics, 1, 1990, 130  mathscinet  zmath

   1989
86. I. T. Habibullin, A. G. Shagalov, “Numerical solution of the Riemann problem of analytic conjugation”, U.S.S.R. Comput. Math. Math. Phys., 29:2 (1989), 39–45  mathnet  crossref  mathscinet  zmath

   1987
87. I. T. Habibullin, “Problem of linear conjugation on a circumference”, Math. Notes, 41:3 (1987), 195–198  mathnet  crossref  mathscinet  zmath  isi (cited: 1)

   1985
88. I. T. Habibullin, “Discrete Zakharov–Shabat systems and integrable equations”, Differential geometry, Lie groups and mechanics. Part VII, Zap. Nauchn. Sem. LOMI, 146, “Nauka”, Leningrad. Otdel., Leningrad, 1985, 137–146  mathnet  mathscinet  zmath

   1981
89. V. Yu. Novokshenov, I. T. Habibullin, Sov. Math. Doklady, 23, no. 2, 1981, 304–307  mathscinet
90. V. Yu. Novokshenov, I. T. Habibullin, “Nonlinear differential-difference schemes integrable by the method of the inverse scattering problem. Asymptotics of the solution for $t\to\infty$”, Dokl. Akad. Nauk SSSR, 257:3 (1981), 543–547  mathnet  mathscinet  zmath

   1979
91. I. T. Habibullin, “The Inverse Scattering Problem For Difference Equations”, Soviet Math. Dokl., 20:6 (1979), 1233–1236 , Mezhdunarodnaya Kniga  mathscinet
92. I. T. Khabibullin, “Obratnaya zadacha rasseyaniya dlya raznostnykh uravnenii”, Doklady AN SSSR, M., 1079, t.249, # 1, s.67-70., 249:1 (1979), 67-70  mathscinet
93. I. T. Habibullin, “The inverse scattering problem for difference equations”, Dokl. Akad. Nauk SSSR, 249:1 (1979), 67–70  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. Cartan matrices and integrable lattice Toda field equations
I. T. Habibullin
International conference "Geometrical Methods in Mathematical Physics"
December 16, 2011 16:45

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020