RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Nagaev, Sergey Victorovich

Total publications: 260 (250)
in MathSciNet: 149 (142)
in zbMATH: 127 (125)
in Web of Science: 66 (66)
in Scopus: 60 (60)
Cited articles: 99
Citations in Math-Net.Ru: 258
Citations in Web of Science: 437
Citations in Scopus: 196
Presentations: 3

Number of views:
This page:2587
Abstract pages:13754
Full texts:5663
References:942
Nagaev, Sergey Victorovich
Professor
Doctor of physico-mathematical sciences (1963)
Speciality: 01.01.05 (Probability theory and mathematical statistics)
Birth date: 11.12.1932
E-mail: , ,
Website: http://math.nsc.ru/LBRT/g1/nagaev/engl.htm
Keywords: Markov chains; central limit theorem; branching processes; probability and moment inequalities; concentration functions; self-normalized statistics; distributions in linear spaces.
UDC: 517.98, 519.214, 519.217, 519.218, 519.224, 519.2, 501.574, 519.214.4, 519.21
MSC: 6012, 60F05, 60F10, 6015, 60J05, 60J10, 60J80, 60J85

Subject:

Markov chains. Large deviations. Probability inequalities. Boundary problems. Branching processes. Infinite-dimensional distributions. Martingales.

Biography

In 1957 Sergei Nagaev applied the spectral theory of linear operators in a Banach space for the asymptotic analysis of Markov chains. 1958 - dissertation "Some limit theorems for homogeneous Markov chains", Tashkent State University. 1963 - dissertation of the doctor of physical and mathematical sciences "Limit theorems for Markov processes with discrete time", Institute of Mathematics, Academy of Sciences of the Uzbek SSR, Tashkent. 1967 - Professor in Theory of Probability and Mathematical Statistics, Novosibirsk State University. 1957-1959 - Assistant of the Department of Theory of Probability and Mathematical Statistics, Tashkent State University. 1964-1977 - Professor, doctor of physical and mathematical sciences, Department of Probability Theory and Mathematical Statistics, Novosibirsk State University. At present, he is the Chief Researcher at the Sobolev Institute of Mathematics, Novosibirsk.

His research S.V. Nagaev leads in several directions. The history of these studies, beginning in 1957, the results obtained and their connection with the studies of other authors are described in his seven brief essays:

1. Markov chains <http://math.nsc.ru/LBRT/g1/nagaev/res/E1NagaevMarkovprocessesDec2008-2.pdf>.

2. Large deviations <http://math.nsc.ru/LBRT/g1/nagaev/res/E2NagaevLargedeviations2009.pdf>.

3. Probability inequalites <http://math.nsc.ru/LBRT/g1/nagaev/res/E3NagaevProbabilityinequalites2008.pdf>.

4. Boundary problems <http://math.nsc.ru/LBRT/g1/nagaev/res/E4NagaevBoundaryProblems2008.pdf>.

5. Branching processes <http://math.nsc.ru/LBRT/g1/nagaev/res/E5NagaevBranchingProcesses2008.pdf>.

6. Infinite-dimensional distributions <http://math.nsc.ru/LBRT/g1/nagaev/res/E6NagaevInfinite-dimension2008-3.pdf>.

7. Martingales <http://math.nsc.ru/LBRT/g1/nagaev/res/E7-NagaevMartingal2008-3.pdf>.

   
Main publications:
  • S. V. Nagaev, The Central Limit Theorem for Markov Chains with General State Space, Siberian Advances in Mathematics, 28 (2018), 265302.
  • S. V. Nagaev, The spectral method and the central limit theorem for general Markov chains, Izv. Math., 81:6 (2017), 11681211.
  • S. V. Nagaev, The spectral method and ergodic theorems for general Markov chains, Izv. Math., 79:2 (2015), 311345.
  • D. H. Fuc, S. V. Nagaev, Probability inequalities for sums of independent random variables, Theory Probab. Appl., 16:4 (1971), 643660.

http://www.mathnet.ru/eng/person17556
List of publications on Google Scholar
https://zbmath.org/authors/?q=ai:https://zbmath.org/authors/?q=ai%3Anagaev.sergey-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/202611
https://elibrary.ru/author_items.asp?spin=6037-1401
http://orcid.org/0000-0001-9959-2605
https://publons.com/researcher/1835085
http://www.researcherid.com/rid/U-8589-2018
https://www.scopus.com/authid/detail.url?authorId=56011358400

Full list of publications:
| scientific publications | by years | by types | by times cited in WoS | by times cited in Scopus | common list |


1. S. V. Nagaev, Teor. Veroyatnost. i Primenen.  mathnet  crossref

   2018
2. S. V. Nagaev, “The central limit theorem for Markov chains with general state space”, Siberian Advances in Mathematics, 28:4 (2018), 265–302 link.springer.com/article/10.3103/S1055134418040028  mathnet  crossref  crossref  mathscinet  mathscinet  zmath  elib  scopus
3. Anatolii Zolotukhin Sergei Nagaev Vladimir Chebotarev, “On a bound of the absolute constant in the BerryEsseen inequality for i.i.d. Bernoulli random variables”, Modern Stochastics: Theory and Applications, 5:3 (2018), 385410  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 2)
4. S. V. Nagaev, “The BerryEsseen Bound for General Markov Chains”, Journal of Mathematical Sciences, 234:6 (2018), 829846  crossref  mathscinet  zmath  scopus
5. S. V. Nagaev, V. I. Chebotarev, “On Large Deviations for Sums of i.i.d. Bernoulli Random Variables”, Journal of Mathematical Sciences, 234:6 (2018), 816828  crossref  mathscinet  zmath  scopus

   2017
6. S. V. Nagaev, “The spectral method and the central limit theorem for general Markov chains”, Izvestiya Mathematics, 81:6 (2017), 1168–1211  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
7. S. V. Nagaev, V. I. Chebotarev, “On large deviation probabilities for the binomial distribution in case of the Poisson approximation”, Matematika v sovremennom mire., Mezhdunarodnaya konferentsiya, posvyaschennaya 60-letiyu Instituta matematiki im. S. L. Soboleva ((Novosibirsk, 14-19 avgusta 2017 g.)), eds. G. V. Demidenko, IM SO RAN, 2017, 372
8. Nagaev S. V., “The BerryEsseen bound for general Markov chains”, Matematika v sovremennom mire (Mezhdunarodnaya konferentsiya, posvyaschennaya 60-letiyu Instituta matematiki im. S. L. Soboleva), (Novosibirsk, 14-19 avgusta 2017 g.), Izd.-vo Instituta matematiki, Novosibirsk, 2017, 371  mathscinet
9. A. Ya. Zolotukhin, S.V. Nagaev, V.I. Chebotarev, “On computing the absolute constant in the BerryEsseen inequality for two-point distributions”, Proceedings of the International Conference Analytical and Computational Methods in Probability Theory (Moscow, Russia, October 23-27, 2017), eds. A. V. Lebedev, Moscow: Peoples friendship University of Russia, 2017, 695-699

   2016
10. S. V. Nagaev, V. I. Chebotarev, “On bounds for large deviations probabilities for the binomial distribution”, Obozrenie prikladnoi i promyshlennoi matematiki, 23:2 (2016) , 151-152 pp.
11. Nagaev S. V., “The Berry-Esseen bounds for general Markov chains”, Obozrenie prikladnoi i promyshlennoi matematiki, 23:2 (2016) , 150-151 pp.
12. Sergei Nagaev, “The Analytical Approach to Recurrent Markov Chains Alternative to the Splitting Method and Its Applications”, 2nd International Symposium on Stochastic Models in Reliability Engineering, Life Science, and Operations Management, SMRLO 2016, Proceedings (Beer Sheva, Israel; February 15 - 18, 2016), eds. Frenkel and Anatoly Lisnianski, Institute of Electrical and Electronics Engineers Inc. (IEEE), 2016, 251-253 ieeexplore.ieee.org/document/7433124  crossref  isi  scopus (cited: 1)
13. Nagaev, S.V., Chebotarev, V.I., Zolotukhin, A.Y., “A Non-Uniform Bound of the Remainder Term in the Central Limit Theorem for Bernoulli Random Variables”, Journal of Mathematical Sciences, 214 (2016), 83-100  crossref  mathscinet  zmath  scopus (cited: 5)
14. S. V. Nagaev, “The Spectral Method and the Central Limit Theorem for General Markov Chains”, Journal of Mathematical Sciences, 218:2 (2016), 216230  crossref  mathscinet  zmath  scopus (cited: 1)
15. T. V. Lazovskaya, S. V. Nagaev, “Problems in Calculating Moments and Distribution Functions of Ladder Heights”, Journal of Mathematical Sciences, 218:2 (2016), 195207  crossref  mathscinet  zmath  scopus

   2015
16. S. V. Nagaev, “The spectral method and ergodic theorems for general Markov chains”, Izv. Math., 79:2 (2015), 311–345  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi (cited: 1)  elib  elib  scopus
17. S.V. Nagaev, , A. Zolotukhin, V.I. Chebotarev, “Solution to one computational problem, related to the gauss approximation for the binomial distribution”, Materials of the 3rd All-Russian Scientific and Practical conf.: Information technology and high-performance computing. (Khabarovsk, June 30-July 4, 2015), eds. A. I. Mazur, A. L. Verkhoturov, Pacific State University, Khabarovsk, 2015, 114-117  elib  scopus
18. Nagaev S.V., “The spectral method and the central limit theorem for general Markov chains”, Doklady Mathematics, 91:1 (2015), 56-59  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus (cited: 1)  scopus (cited: 1)
19. Nagaev, S.V., “Probabilistic inequalities for the galtonwatson processes”, Theory of Probability and its Applications, 59:4 (2015), 611-640  crossref  mathscinet  zmath  scopus
20. Nagaev, S.V., “Probabilistic inequalities for the galtonwatson processes”, Theory of Probability and its Applications, 59:4 (2015), 611-640  crossref  mathscinet  zmath  scopus
21. S. V. Nagaev, “Local renewal theorems in the absence of an expectation”, Theory Probab. Appl., 59:3 (2015), 388–414  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib  elib  scopus (cited: 1)

   2014
22. Nagaev S.V., Chebotarev V. I., Zolotukhin A. Ya., “Odna neravnomernaya otsenka v integralnoi teoreme Muavra-Laplasa i ee primenenie”, XXXVIII Dalnevostochnaya matematicheskaya shkola-seminar imeni akademika E. V. Zolotova (1 - 5 sentyabrya 2014 g., Vladivostok), IAPU DVO RAN, Vladivostok, 2014, 7274
23. S. V. Nagaev, “The spectral method and the central limit theorem for the general Markov chains”, Proceedings of the International Congress of Mathematicians, 4 vol. (August 13 - 21, 2014 Coex , Seoul , Korea), Kyung Moon SA, Seoul, 2014, 424
24. Chebotarëv, V. I., Nagaev, S. V., Zolotukhin Anatoly, “On a non-uniform bound of the normal approximation for the binomial distribution and its application”, Proceedings of the International Congress of Mathematicians, 4 vol. (August 13 - 21, 2014 Coex , Seoul , Korea), Kyung Moon SA, Seoul, 2014, 2014, 413-414  mathscinet
25. Zolotukhin A. Ya., Nagaev S. V., Chebotarev V. I., “On a non-uniform bound of the remainder term in central limit theorem for Bernoulli distributions”, XXXII International Seminar on Stability Problems for Stochastic Models, Book of Abstracts (16 - 21 June, 2014, Trondheim, Norway.), Institute of Informatics Problems, RAS, Moscow, 2014, 86 - 87  mathscinet
26. Lazovskaya, T.V., Nagaev, S.V., “Problems in calculating of the moments and the distribution function of the ladder height”, XXXII International Seminar on Stability Problems for Stochastic Models, Book of Abstracts (16 - 21 June, 2014, Trondheim, Norway), Institute of Informatics Problems, RAS, Moscow, 2014, 62 - 63  crossref  mathscinet  scopus
27. S.V. Nagaev, “The extension of the spectral method to the Harris Markov chains”, XXXII International Seminar on Stability Problems for Stochastic Models Book of Abstracts (16 - 21 June, 2014, Trondheim, Norway. Moscow, Institute of Informatics Problems, RAS), 2014, 84-85

   2015
28. S. V. Nagaev, “Probability inequalities for Galton–Watson processes”, Theory Probab. Appl., 59:4 (2015), 611–640  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus

   2013
29. Nagaev S. V., “The ergodic theorems for Markov chains with an arbitrary phase space”, Doklady Mathematics, 88:3 (2013) , 684686 pp.  crossref  crossref  mathscinet  zmath  isi  elib  scopus
30. Nagaev S.V., Lazovskaya T., “O problemakh priblizhennogo vychisleniya momentov i vosstanovleniya funktsii raspredeleniya verkhnei lestnichnoi vysoty”, XXXVII Dalnevostochnaya matematicheskaya shkola-seminar imeni akademika E. V. Zolotova, sb. dokl. (08 sentyabrya 14 sentyabrya 2013 g., Vladivostok), Dalnauka, Vladivostok, 2013, 128132
31. S.V. Nagaev, A. Ya. Zolotukhin, V.I. Chebotarev, “One computational problem associated with the Gaussian approximation to the binomial distribution”, Informatica i sistemy upravleniya, 38:4 (2013), 1618  elib
32. Nagaev S. V., “The ergodic theorems for Markov chains with an arbitrary phase space”, Doklady Mathematics, 88:3 (2013), 684686  crossref  crossref  mathscinet  zmath  isi  elib  scopus

   2012
33. Nagaev S.V., “Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity”, Annales Mathematicae et Informaticae, 39 (2012) , 18 pp.  mathscinet  zmath  scopus (cited: 1)
34. Nagaev, S.V., “The renewal theorem in the absence of power moments”, Theory of Probability and its Applications, 56:1 (2012), 166-175  crossref  mathscinet  zmath  isi  scopus (cited: 5)
35. Nagaev, S.V., Chebotarev V. I., “On the bound of proximity of the binomial distribution to the normal one”, Theory of Probability and its Applications, 56:2 (2012), 213-239  crossref  mathscinet  zmath  scopus (cited: 6)
36. “Local reconstruction theorem in the absence of mathematical expectation”, Doklady Mathematics, 86:3 (2012), 831-833  crossref  mathscinet  zmath  elib  scopus

   2011
37. S. V. Nagaev, V. I. Chebotarev, “On estimation of closeness of binomial and normal distributions”, Theory Probab. Appl., 56:2 (2011), 213–239  mathnet  crossref  crossref  mathscinet  isi (cited: 6)  elib  elib  scopus (cited: 6)
38. S. V. Nagaev, “Teorema vosstanovleniya pri otsutstvii stepennykh momentov”, Teoriya veroyatn. i ee primen., 56:1 (2011), 188–197  mathnet (cited: 6)  crossref  mathscinet  zmath  isi (cited: 5)  elib
39. S. V. Nagaev, Renewal theorems in the case of attraction to the stable law with characteristic exponent smaller than unity, Preprint 2011/272, Sobolev Institute of Mathematics, Novosibirsk, 2011 , 19 pp., (In Russian)  zmath
40. Nagaev S.V., Chebotarev V.I., “Ob otsenke blizosti binomialnogo raspredeleniya k normalnomu”, Doklady Akademii nauk, 436:1 (2011), 26-28  zmath  elib
41. Nagaev, S.V., Chebotarev V. I., “On the bound of proximity of the binomial distribution to the normal one”, Doklady Mathematics, 83:1 (2011), 19-21  crossref  mathscinet  zmath  isi (cited: 3)  elib  scopus (cited: 2)

   2010
42. S. V. Nagaev, “Exact expressions for the moments of ladder heights”, Siberian Mathematical Journal, 51:4 (2010), 675–695  mathnet  crossref  mathscinet  zmath  isi (cited: 3)  elib  elib  scopus (cited: 5)

   2011
43. S. V. Nagaev, “On conditions sufficient for subexponentiality”, Theory Probab. Appl., 55:1 (2011), 153–164 https://epubs.siam.org/doi/abs/10.1137/S0040585X97984711?journalCode=tprbau  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  elib  scopus (cited: 4)

   2010
44. S.V. Nagaev, V.I. Chebotarev, “On precise bound of convergence rate in the integral Moivre-Laplace theorem”, XXXV Far Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Reports. [Electronic resource]. -, 2010, 908 pp.; volume 646 Mb; 1 CD-ROM. . P. 122-128. (In Russian) (31 Aug. - 5 Sept. 2010, Russia), ISBN 978-5-7442-1500-2, 646, IAPU DVO RAN, Vladivostok, 2010, 111-117
45. S.V. Nagaev, A.S. Kondrik, K. V. Mikhaylov, V.I. Chebotarev, “On computation of error in the integral Moivre-Laplace theorem”, XXXV Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Reports. [Electronic resource]. volume 646 Mb; 1 CD-ROM. ISBN 978-5-7442-1500-2. (In Russian) (31 Aug. -5 Sept. 2010, Vladivostok), IAPU DVO RAN, Vladivostok, 2010, 111-117
46. S. V. Nagaev, “A New Proof of the Absolute Convergence of the Spitzer Series”, Theory Probab. Appl., 54:1 (2010), 151–154 https://epubs.siam.org/doi/abs/10.1137/S0040585X97984024  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus (cited: 2)

   2009
47. S. V. Nagaev, “On sufficient conditions for subexponentiality”, Doklady Mathematics, 80:2 (2009), 697700 https://link.springer.com/article/10.1134  crossref  mathscinet  zmath  isi  elib  scopus
48. Nagaev S.V., Chebotarev V.I., “Ob usloviyakh, dostatochnykh dlya subeksponentsialnosti”, Doklady Akademii nauk, 428:1 (2009), 26-28  mathscinet  elib
49. S.V. Nagaev, V.I. Chebotarev, On the bound of closeness of the bianomial distribution to the normal one, Research Report 2009/142, Computing Centre FEB RAS, Khabarovsk, 2009 , 47 pp.

   2008
50. S. V. Nagaev, “Formula for the Laplace Transform of the Projection of a Distribution on the Positive Semiaxis and Some of Its Applications”, Math. Notes, 84:5 (2008), 688–702 https://link.springer.com/article/10.1134/S0001434608110102  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib  elib  scopus (cited: 2)
51. S. V. Nagaev, V. I. Vakhtel, “On sums of independent random variables without power moments”, Siberian Mathematical Journal, 49:6 (2008), 1091–1100  mathnet  crossref  mathscinet  zmath  isi (cited: 5)  elib  elib  scopus (cited: 4)
52. Sergey V. Nagaev, “Asymptotic formulas for probabilities of large deviations of ladder heights”, Theory Stoch. Process., 14(30):1 (2008), 100–116 dspace.nbuv.gov.ua/handle/123456789/4541  mathnet  mathscinet  zmath
53. S.V. Nagaev, New approach to the analysis of large deviations of stairs ledder, Preprint, IM SO RAN, Novosibirsk, 2008 , 25 pp.
54. Nagaev, Sergei Viktorovich, “OTsENKI VEROYaTNOSTEI BOLShIKh UKLONENII DLYa PROTsESSOV GALTONA- VATSONA”, Obozrenie prikladnoi i promyshlennoi matematiki, 15:4 (2008), 753-754.  mathscinet  elib
55. Nagaev S.V., “Exact expressions for moments of ladder heights”, Doklady Mathematics, 78:3 (2008), 916-919  mathnet  crossref  mathscinet  zmath  elib  elib  scopus
56. Nagaev S. V., Tsepi Markova, 2008 http://math.nsc.ru/LBRT/g1/nagaev/res/R1NagaevMarkovprocessesDec2008.pdf}{math.nsc.ru/LBRT/g1/nagaev/res/R1NagaevMarkovprocessesDec2008.pdf}

   2007
57. Nagaev S.V., “Formula for the Laplace transform of the projection of a distribution on the positive half-line and some of its applications”, Doklady Mathematics, 76:3 (2007), 872-875  mathnet  crossref  mathscinet  zmath  isi  elib  elib  scopus
58. S.V. Nagaev, V.I., Chebotarev, “Estimation of the Edgeworth expansion terms in Hilbert space and one F. Gotzes conjecture”, International J. of Statistical Sciences, 2007, (Special Issue, no. 6, 109-126
59. Nagaev S. V., “On probability and moment inequalities for supermartingales and martingales”, Acta Applicandae Mathematicae, 97 (2007), 151-162  crossref  mathscinet  zmath  elib  scopus (cited: 1)
60. Nagaev, S.V., Wachtel, V., “The critical Galton-Watson process without further power moments”, Journal of Applied Probability, 44:3 (2007), 753-769  crossref  mathscinet  zmath  isi (cited: 6)  scopus (cited: 6)
61. S. V. Nagaev, “On Novak's paper in v. 49, № 2, p. 365–373”, Teor. Veroyatnost. i Primenen., 52:3 (2007), 622  mathnet  crossref  mathscinet  elib
62. S. V. Nagaev, “On probability and moment inequalities for supermartingales and martingales”, Theory Probab. Appl., 51:2 (2007), 367–377 http://math.nsc.ru/LBRT/g1/nagaev/files/e-4.pdf  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus (cited: 2)

   2006
63. Nagaev, S.V., Vakhtel, V.I., “On sums of independent random variables without power moments”, Doklady Mathematics, 74:2 (2006), 683-685  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  elib  scopus
64. S.V. Nagaev, Formula for the Laplace transform of a projection of a distribution onto the positive semiaxes and some its applications, Preprint, IM SO RAN, Novosibirsk, 2006 , 19 pp.
65. Nagaev, S. V.; Vakhtel, V. I., “On sums of independent random variables without power moments”, DOKLADY MATHEMATICS, 74:2 (2006), 683-685 https://link.springer.com/article/10.1134  crossref  zmath  isi (cited: 2)  elib  scopus (cited: 1)
66. Nagaev, S.V., Vakhtel, V.I., “On the local limit theorem for a critical Galton-watson process”, Theory of Probability and its Applications, 50:3 (2006), 400-419 http://math.nsc.ru/LBRT/g1/nagaev/files/e-7.pdf  crossref  mathscinet  zmath  scopus (cited: 2)
67. Nagaev S. V., “On the best constants in the Burkholder type inequality for the product of independent random variables”, Prague Stochastics 2006, Proceedings of the joint session of 7th Prague Symposium on Asymptotic Statistics and 15th Prague Conference on Information Theory, Statistical Decision Functions and Random Processes (Prague, from August 21 to 25, 2006), Prague: Matfyzpress, 2006, 544-554  mathscinet
68. S.V. Nagaev, V.I. Chebotarev, “Novyi podkhod k otsenke absolyutnoi konstanty v neravenstve BerriEsseena”, Dalnevostochnaya matematicheskaya shkola-seminar imeni akademika E.V. Zolotova, Tezisy dokladov (Vladivostok, 3-9 sentyabrya 2006 g.), Dalnauka, Vladivostok, 2006, 19
69. Kharchenko, V. P.; Nagaev, S. V.; Kukush, A. G.; Znakovskaya, E. A.; Dotsenko, S. I., “Determination of the size of a sample in a method for modeling rare events”, Cybernet. Systems Anal., 42:1 (2006), 6574  crossref  mathscinet  zmath  elib  scopus
70. V. P. KharchenkoS. V. NagaevA. G. KukushE. A. ZnakovskayaS. I. Dotsenko, “Determination of sample size in a rare event simulation method”, Cybernetics and Systems Analysis, 42:1 (2006)  crossref  mathscinet  zmath  scopus
71. S. V. Nagaev, V. I. Vakhtel, “On the local limit theorem for critical Galton–Watson process”, Theory Probab. Appl., 50:3 (2006), 400–419  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus (cited: 2)
72. S. V. Nagaev, V. I. Vakhtel, “Probability inequalities for the Galton–Watson critical process”, Theory Probab. Appl., 50:2 (2006), 225–247 http://math.nsc.ru/LBRT/g1/nagaev/files/e-8.pdf  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 7)  elib  elib  scopus (cited: 6)

   2005
73. S.V. Nagaev, V.I., Chebotarev, “On the bound of the absolute constant in the Berry-Esseen inequality, II”, XXX Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Abstracts, Khabarovsk, 2005, 35-37
74. S. V. Nagaev, V. I. Chebotarev, “On the Accuracy of Gaussian Approximation in Hilbert Space”, Siberian Advances in Mathematics, 15:1 (2005), 11–73 http://math.nsc.ru/LBRT/g1/nagaev/files/109_Paper.pdf  mathnet  mathscinet  zmath  elib

   2004
75. S. V. Nagaev, “On large deviations of a self-normalized sum”, Theory Probab. Appl., 49:4 (2004), 704–713  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 2)
76. S.V. Nagaev, V.I. Chebotarev, On an absolute constant in the Berry-Esseen bound Research Report, 2004/78, Computing Centre FEB RAS, Khabarovsk, 2004 , 18 pp.
77. S.V. Nagaev, V.I. Chebotarev, “On the bound of the absolute constant in the Berry-Esseen inequality, I.”, Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Abstracts, Vladivostok, 2004, 16

   2003
78. S. V. Nagaev, V. I. Vakhtel, “Limit theorems for probabilities of large deviations of a Galton-Watson process”, Discrete Math. Appl., 13:1 (2003), 1–26 https://www.degruyter.com/view/j/dma.2003.13.issue-1/156939203321669537/156939203321669537.xml  mathnet  crossref  crossref  mathscinet  zmath  scopus

   2004
79. A. K. Aleshkyavichene, S. V. Nagaev, “Transient phenomena in a random walk”, Theory Probab. Appl., 48:1 (2004), 1–18  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  scopus (cited: 1)

   2003
80. S.V. Nagaev, V.I. Chebotarev, Estimation of terms of Edgeworth expansion in Hilbert space and one F. Goetzes conjecture, Research Report 2003/67, Computing Centre FEB RAS, Khabarovsk, 2003 , 17 pp.
81. S.V. Nagaev, V.I. Chebotarev, “Estimation of the Edgeworth expansion terms in Hilbert space and a conjecture of F. Götze”, Far-Eastern Mathematical School-Seminar behalf of Academician E. V. Zolotov, Abstracts, Vladivostok, 2003, 11-13
82. Nagaev S.V., “On probability and moment inequalities for supermartingales and martingales”, Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications, 79:1 (2003), 35-46  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 5)

   2002
83. Nagaev S.V., “THE Berry-Esseen bound for self-normalized sums”, Siberian Advances in Mathematics, 12 (2002) , 79 pp. www.math.nsc.ru/LBRT/g1/nagaev/files/e-14.pdf  zmath
84. Nagaev, Sergei Viktorovich, On large deviations of self-normalized sum, Izd-vo In-ta matematiki, Novosibirsk, 2002 , 11 pp.
85. Nagaev, Sergei Viktorovich, Veroyatnostnye neravenstva dlya kriticheskogo protsessa Galtona - Vatsona, Preprint / Ros. akad. nauk. Sib. otd-nie. In-t matematiki im. S. L. Soboleva, In-t matematiki im. S.L. Soboleva RAN, Novosibirsk, 2002 , 14 pp.  mathscinet
86. Nagaev, Sergei Viktorovich, On large deviations of self-normalized sum, Preprint / Ros. akad. nauk. Sib. otd-nie. In-t matematiki im. S. L. Soboleva; 89, Izd-vo In-ta matematiki, Novosibirsk, 2002 , 11 pp.
87. S. V. Nagaev, “Lower Bounds for Probabilities of Large Deviations of Sums of Independent Random Variables”, Theory Probab. Appl., 46:4 (2002), 728–735  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 5)  scopus (cited: 4)
88. S. V. Nagaev, “Lower Bounds on Large Deviation Probabilities for Sums of Independent Random Variables”, Theory Probab. Appl., 46:1 (2002), 79–102 https://epubs.siam.org/doi/abs/10.1137/S0040585X97978725  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 7)  scopus (cited: 5)

   2001
89. Nagaev, S. V., “Lower bounds on large deviation probabilities for sums of independent random variables.”, Asymptotic methods in probability and statistics with applications (St. Petersburg, 1998), Stat. Ind. Technol., Birkhäuser Boston, Boston, MA, 2001, 277295  crossref  mathscinet  zmath
90. Nagaev S. V., “Threshold Phenomena in Random Walks”, Asymptotic Methods in Probability and Statistics with Applications. Statistics for Industry and Technology., 978-1-4612-0209-7, eds. Balakrishnan N., Ibragimov I.A., Nevzorov V.B. (eds), Birkhäuser, Boston, 2001, 465-485  crossref  mathscinet  zmath
91. Nagaev, Sergei Viktorovich, On the Berry- Esseen bound for the self-normalized sum, Preprint / Ros. akad. nauk. Sib. otd-nie. In-t matematiki im. S. L. Soboleva; 82, Izd-vo In-ta matematiki im. S. L. Soboleva, Novosibirsk, 2001 , 39 pp.  mathscinet
92. Kagan A., Nagaev S., “HOW MANY MOMENTS CAN BE ESTIMATED FROM A LARGE SAMPLE?”, Statistics & Probability Letters, 55:1 (2001), 99-105  crossref  mathscinet  zmath  scopus (cited: 5)

   2000
93. S. V. Nagaev, “On probablity and moment inequalties for dependent random variables”, Theory Probab. Appl., 45:1 (2000), 152–160 https://epubs.siam.org/doi/abs/10.1137/S0040585X97978142  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)  scopus (cited: 6)
94. Nagaev, Sergei Viktorovich, Ob otsenke tochnosti gaussovskoi approksimatsii v gilbertovom prostranstve, Preprint / Ros. akad. nauk. Dalnevost. otd-nie. Vychisl. tsentr; 2000/47, Vychisl. tsentr DVO RAN, Khabarovsk, 2000 , 58 pp.

   1999
95. S. V. Nagaev, L. V. Nedorezov, V. I. Vakhtel, “A probabilistic continuous-discrete model of the dynamics of the size of an isolated population”, Journal of Applied and Industrial Mathematics, 2:2 (1999), 147–152  mathnet  mathscinet  zmath
96. S.V. Nagaev, “Probability and moment inequalities for sums of dependent Banach space valued random variables”, XX International Seminar on Stability Problems for Stochastic Models, . Wydawnictwo uniwersytetu Marii Kurie-Sklodowskiej, Lublin, 1999. (Lublin Naleczow, 5-11 September, 1999):, Wydawnictwo Uniwersytetu Marii Curie-Sklodowskiej, Lublin, 1999, 125
97. S.V. Nagaev, “On estimation of a coverage probability in a non-linear regression model”, VI All-Russian School-Colloq. on Stochastic Methods, Survey of Appl. and Industr. Mat. (Samara, August 5-12, 1999), 6, no. 1, 1999, 178-179
98. Nagaev, S.V., Chebotarev, V.I., “On the Accuracy of Gaussian Approximation in Hilbert Space”, Acta Applicandae Mathematicae, 58:1 (1999), 189-215  crossref  mathscinet  zmath  scopus (cited: 3)

   1998
99. Nagaev S.V., “The analytical approach to the harris recurrent markov chains and the berry-esseen bound”, Doklady Akademii Nauk, 359:5 (1998), 590-592  mathnet  mathscinet  zmath  isi  scopus

   1999
100. S. V. Nagaev, E. L. Presman, “On the iterated logarithm law in a control problem”, Theory Probab. Appl., 43:2 (1999), 288–293  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 1)

   1998
101. Nagaev S.V., “Concentration functions and the accuracy of approximation by infinitely divisible laws in a Hilbert space”, DOKLADY AKADEMII NAUK, 57:2 (1998), 254-256  mathnet  mathscinet  zmath  isi  scopus
102. Nagaev S.V., “An analytical approach to the Markov chains recursive in the sense of Harris, and the Berry-Esseen estimate”, Doklady Mathematics, 57:2 (1998), 264-266  zmath  isi  scopus
103. S.V. Nagaev, E.L.Presman, “On the law of iterated logarithm in one problem of control”, Probability theory and mathematical statistics : proceedings of the Seventh Vilnius Conference (1998), [in conjunction with the 22nd European Meeting of Statisticians] (Vilnius, Lithuania, 12-18 August, 1998), 466 p., eds. B Grigelionis, TEV, Vilnius, 1998
104. S.V. Nagaev, “Probability inequalities for sums of dependent Banach space valued random variables”, International Congress of Mathematicians, ICM 1998. International Congress of Mathematicians Abstracts of Short Communications and Poster Sessions (Berlin, August 18-27, 1998), 263, Berlin, 1998
105. S.V. Nagaev, “Lower bounds on large deviation probabilities for sums of independent random variables”, Intern. Conf. "Asympt. Methods in Probab. and Math. Stat." Dedicated to the Anniversary of the Chair of Probab. and Stat., Abstracts. Mezhdunarodnaya konferentsiya “Asimptoticheskie metody v teorii veroyatnostei i matematicheskoi statistike”, posvyaschennaya 50-letiyu obrazovaniya Kafedry teorii veroyatnostei i matematicheskoi statistiki Sankt-Peterburgskogo gosudarstvennogo universiteta (St. Petersburg University, June 24-28, 1998), St. Petersburg University, St. Peterburg, 1998, 186-190
106. S.V. Nagaev, L.V. Nedorezov, V.I. Vakhtel, “Stokhasticheskaya model dinamiki izolirovannoi populyatsii”, Tretii Sibirskii kongress po prikladnoi i industrialnoi matematike (INPRIM-98), Tezisy, chast IV, IM SO RAN, Novosibirsk, 1998, 121
107. S.V. Nagaev, V.I. Chebotarev, On accuracy of Gaussian approximation in Hilbert space, Preprint 98/32, Far-Eastern Branch, Computing Centre FEB RAS, Khabarovsk, 1998 , 3-48 pp.
108. S. V. Nagaev, “Some refinements of probabilistic and moment inequalities”, Theory Probab. Appl., 42:4 (1998), 707–713 https://epubs.siam.org/doi/10.1137/S0040585X9797657X  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 4)  scopus (cited: 11)
109. S. V. Nagaev, “Probabilistic inequalities for sums of independent random variables in terms of truncated pseudomoments”, Theory Probab. Appl., 42:3 (1998), 520–528  mathnet  crossref  crossref  mathscinet  zmath  isi  scopus

   1997
110. Nagaev S.V., “Some refinements of probabilistic and moment inequalities”, Theory of Probability and its Applications, 42:4 (1997), 707-713 https://epubs.siam.org/doi/abs/10.1137/S0040585X9797657X  crossref  mathscinet  zmath  scopus (cited: 11)

   1996
111. S. V. Nagaev, S. S. Khodzhabagyan, “On an estimate for the concentration function of sums of independent random variables”, Theory Probab. Appl., 41:3 (1996), 560–578 https://epubs.siam.org/doi/10.1137/S0040585X9797657X  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  scopus (cited: 6)
112. Nagaev, Sergei, “On accuracy of approximation in central limit theorem.”, Probability theory and mathematical statistics (St. Petersburg, 1993), Gordon and Breach, Amsterdam, 1996, 95108  mathscinet  zmath
113. S.V. Nagaev, “Some refinements of probability inequalities”, Mosc. Univ. Math. Bull, 51:6 (1996), 560-569  mathnet  mathscinet  zmath
114. S.V. Nagaev, “On the analytical approach to Harris Markov Chains”, Fourth World Cong. of the Bernoulli Society, Abstracts (Vienna, Austria, 1996, August 26-31), 1996, 346

   1995
115. S. V. Nagaev, “On a model of a random walk”, New Trends in Probability and Statistics, Proceed. Second Ukrainian-Hungarian Conference (Mukachevo, Ukraine, September 25-October 1, 1992), eds. M. Arato, M.I. Yadrenko, Teor. Veroyatnost. Matemat. Statist., Kiev, 1995, 223-226  zmath
116. S.V. Nagaev, “The analitical approach to Markov chains satisfying the Harris condition and rates of convergence in limit theorems”, Abstr. of Japan-Russian Symp. Probab. and Math. Statist. (Tokyo), 1995, 68
117. S.V. Nagaev, “The Berry-Esseen bound for Markov chains satisfying the Harris condition”, Abstr. Comm. XVII Seminar on Stability Problems of Stochastic Models. (Kazan, 19-26 June 1995), 1995, 27-28

   1994
118. Nagaev, S, “On accuracy of approximation with stable laws”, Probability theory and mathematical statistics : proceedings of the sixth Vilnius Conference (Vilnius, Lithuania, 28 June - 3 July, 1993), 6th Vilnius Conference on Probability Theory and Mathematics Statistics, eds. E. Gechauskas, Matematikas ir Informatikas Institutas, 1994, 591-604  mathscinet  zmath  isi
119. S. V. Nagaev, “On accuracy of approximation with stable laws. Probab.”, Probability Theory and Mathematical Statistics, Proceedings of the Sixth Vilnius Conference (1993) (Vilnius, Lithuania, 28 June–3 July, 1993), eds. Bronius Grigelionis, VSP VSP/TEV Ltd Utrecht, 1994, 591-604 https://books.google.ru/books?id=9UMOvAsTXVkC&printsec=frontcover&hl=ru&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false  mathscinet  zmath  isi
120. Nagaev S.V., “The accuracy of approximation with stable laws”, Abstr. Comm. XVI Seminar on Stability Problems of Stochastic Models (Eger, Hungary, August 29-September), 1994, 52

   1993
121. A. V. Karpenko, S. V. Nagaev, “Limit theorems for the total number of descendants for the Galton–Watson branching process”, Theory Probab. Appl., 38:3 (1993), 433–455  mathnet  crossref  mathscinet  zmath  isi (cited: 3)
122. Nagaev, S.V., Kirsanov, G.A., “Heat conduction of the ″Karbotextim-V″ graphitized felt at high temperatures”, Teplofizika Vysokikh Temperatur, 31:1 (1993), 99-105  crossref  mathscinet  scopus (cited: 5)
123. S.V. Nagaev, “On estimaites of the rate of convergence in the CLT in a Hilbert space”, Workshop on Limit Theorems and Nonparametric Statistics, Abstracts of commun. (August 24 - 28, 1992), Universitat Bielefeld, 1993, 1-3
124. Nagaev, S. V.; Chebotarëv, V. I., “On Edgeworth expansions in Hilbert space”, Siberian Advances in Mathematics, 3:3 (1993), 89122  mathscinet  zmath
125. S. V. Nagaev, V. I. Chebotarev, “On the Edgeworth expansion in a Hilbert space”, Trudy Inst. Mat. SO RAN, 20 (1993), 170–203  mathnet  mathscinet  zmath

   1992
126. S.V. Nagaev, “Bounds for the rate of confergence in the ergodic theorem for homogeneous Markov chains”, Intern. Conf. dedicated to the memory of academishian M. P. Kravchuk, Abstracts (Kiev-Lutsk, 1992), IM, Kiev, 1992, 141

   1991
127. Nagaev, S. V.; Chebotarëv, V. I, “On the Bergström type asymptotic expansion in Hilbert space [translation of Trudy Inst. Mat. (Novosibirsk) 13 (1989), Asimptot. Analiz Raspred. Sluch. Protsess., 6677; MR1037249].”, 6677, Siberian Advances in Mathematics, 1, no. 2, 1991 , 130-145 pp.  mathscinet
128. Nagaev S.V., “Ergodic Theorems for discrete-time random processes”, New trends in probability and statistics, Bakuriani Colloquium on Probability Theory and Mathematical Statistics 1990 (Bakuriani, Georgia, USSR, 24 February -4 March 1990), eds. Prohorov, Y. V., Mokslas, Vilnius, Lithuania, 1991, 190-197  mathscinet
129. S.V. Nagaev, “Concentration functions and approximation with infinitely divisible laws in Hilbert space”, Comm. VI USSR - Japan Symp. Probab. Theory and Mat. Statist., Abstr. (Kiev, 1991), 1991, 108

   1990
130. Nagaev S.V., “On a new approach to the study of the distribution of a norm of a random element in Hilbert space”, Probability theory and mathematical statistics, Lietuvos TSR Mokslų akademija; Matematicheskiĭ institut im. V.A. Steklova.; Vilniaus Valstybinis V. Kapsuko vardo universitetas. (June 25-July 1, 1989), Mokslas ; Utrecht, The Netherlands : VSP, Vilnius, Lithuania:, 1990, 214-226  mathscinet
131. S.V. Nagaev, V.I. Chebotarev, On Bergstrem expansion in Hilbert space, preprint, Far-Eastern Branch, Inst. Appl. Math., Khabarovsk, 1990 , 50 pp.

   1989
132. Nagaev S. V., “A Berry-Esseen type estimate for sums of Hilbert space valued random variables”, Siberian Mathematical Journal, 30:3 (1989), 413423  mathnet  crossref  mathscinet  zmath  isi  isi  scopus (cited: 1)
133. S. V. Nagaev, V. I. Chebotarev, On Edgeworth expansion in Hilbert space. Far-Eastern Branch USSR, Preprint Inst. Appl. Math. Far-Eastern Branch USSR, Vladivostok, 1989 , 1-62 pp.
134. S.V. Nagaev, V. I. Chebotarev, “O razlozhenii Edzhvorta v gilbertovom prostranstve”, Pyataya Mezhdunarodnaya vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov (Vilnyus, 26 iyulya - 1 iyulya 1989 g.), eds. E. Gechauskas, Matematikas ir Informatikas Institutas, Vilnyus, 1989, 81-82
135. S.V. Nagaev, A.R. Karpenko, “Limit theorems for a total progeny in a Galton-Watson branching process”, Fifth International Vilnius conference on probability theory and mathematical statistics,, 4, Vilnius, 1989, 79-80 (to appear)
136. S.V. Nagaev, “On a new approach to the study of the distribution of a norm of a random element in a Hilbert space”, Fifth International Vilnius conference on probability theory and mathematical statistics (Vilnius), 4, 1989, 77-78
137. S.V. Nagaev, V.I. Chebotarev, On Edgeworth expansion in Hilbert space, Preprint, Far-Eastern Branch USSR, Inst. Appl. Math. Far-Eastern Branch USSR, Vladivostok, 1989 , 62 pp.
138. S. V. Nagaev, “Ergodic theorems for homogeneous Markov chains”, Dokl. Math., 39:3 (1989), 483–486  mathnet  mathscinet  zmath
139. S. V. Nagaev, V. I. Chebotarev, “On an asymptotic expansion of Bergström type in a Hilbert space”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 13 (1989), 66–77  mathnet  mathscinet  zmath
140. S. V. Nagaev, “An estimate of Berry–Esseen type for sums of random variables with values in Hilbert space”, Dokl. Math., 38:3 (1989), 476–477  mathnet  mathscinet  zmath  isi

   1988
141. S.V. Nagaev, On ergodic theory of homogenious Markov chains, Preprint. 57, Inst. Math. Ukrainian SSR Acad. Sci., 1988 , 3-21 pp.
142. S.V. Nagaev, “An estimate of Berry-Esseen type for sums of random variables with values in Hilbert space”, Soviet Math. Dokl., 38:3 (1988), 476-477  mathnet

   1987
143. Nagaev, S. V.; Chebotarëv, V. I., “Asymptotic expansions of the distributions of sums of i.i.d. Hilbert space valued random variables. Probability theory and mathematical statistics, Vol. II (Reviewer: M. Bhaskara Rao)”, Probability theory and mathematical statistics, Vol. II, VNU Sci. Press, Utrecht, 1987. ((Vilnius, 1985),), eds. (Reviewer: M. Bhaskara Rao), 1987, 357363  zmath
144. Nagaev, S. V.; Chebotarjev, V. I., “On asymptotic expansion for the distribution of the sum of independent identically distributed random variables taking values in Hilbert space. 693696, VNU Sci. Press, Utrecht,”, Proceedings of the 1st World Congress of the Bernoulli Society, Vol. 1, VNU Sci. Press, Utrecht (Tashkent, 1986), VNU Sci. Press, Utrecht, 1987, 693696  mathscinet
145. S. V. Nagaev, V. I. Chebotarev, “On asymptotic expansion for the distribution of the sum of independent identically distributed random variables taking values in Hilbert space”, Proc. of the I World Congress of the Bernoulli Society, Tashkent, USSR (Tashkent, USSR, 8-14 September 1986), Mathematical Statistics and Probability. World Congress, eds. Yu A Prohorov; V V Sazonov, VNU Science Press, 1987, 693-696  mathscinet [ .., .., . , . . (15 - 20 . 1986, ), .: , , , , 1986  zmath]
146. S.V. Nagaev, A.R. Karpenko, Limit theorems for a total progeny in a Galton Watson branching process, Preprint 33, IM SB RAS, 1987 (to appear) , 36 pp.
147. Nagaev S.V., “Probability inequalities for sums of independent random variables with values in a Banach space”, Siberian Mathematical Journal, 28:4 (1987), 652-664  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  isi (cited: 2)  scopus (cited: 2)

   1986
148. Nagaev S.V., Chebotarev V. I., “A refinement of the error estimate of the normal approximation in a Hilbert space”, Siberian Mathematical Journal, 27:3 (1986) , 16 pp. https://link.springer.com/article/10.1007  crossref  mathscinet  mathscinet  isi (cited: 4)  scopus (cited: 5)
149. NAGAEV, SV, “ON THE RATE OF CONVERGENCE TO NORMAL LAW IN HILBERT SPACE”, THEORY OF PROBABILITY AND ITS APPLICATIONS, 30 (1986), 19-37  crossref  mathscinet  zmath
150. S.V. Nagaev, “Probability inequalities for sums of independent Banach-valued random variables”, Soviet Math. Dokl., 1986, 385-387  mathnet  mathscinet  zmath
151. S. V. Nagaev, “Veroyatnostnye neravenstva dlya summ nezavisimykh sluchainykh velichin so znacheniyami v banakhovom prostranstve”, Dokl. AN SSSR, 287:2 (1986), 284286  mathnet  mathscinet  zmath
152. Nagaev S. V., “Probability-inequalities for sums of banach space-valued independent random-variables”, Doklady Akademii Nauk SSSR, 287:2 (1986), 284-286  mathnet  mathscinet  zmath
153. S. V. Nagaev, V. I. Chebotarev, “Refinement of an error estimate for normal approximation in a Hilbert space”, Siberian Math. J., 27:3 (1986), 434–450  mathnet  crossref  mathscinet  zmath  isi
154. S. V. Nagaev, “On the Rate of Convergence to Normal Law in Hilbert Space”, Theory Probab. Appl., 30:1 (1986), 19–37 https://epubs.siam.org/doi/abs/10.1137/1130003  mathnet  crossref  mathscinet  zmath  isi

   1985
155. NAGAEV, SV; ASADULLIN, MK, “One scheme of summing a random number of independent random-variables with the application to branching-processes with immigration”, Doklady Akademii nauk SSSR, 285:2 (1985), 293-296  mathnet  mathscinet  zmath  zmath  zmath  isi
156. S.V. Nagaev, N.V. Gizbrecht, “A random walk scheme that describes the particle transport phenomenon”, Limit theorems of probability theory, Proc. Inst. Math. Sib. Branch USSR Acad. Sci., 5, 1985, 103-126
157. S.V. Nagaev, M.Kh. Asadullin, “Ob odnoi skheme summirovaniya sluchainogo chisla nezavisimykh velichin s prilozheniem k vetvyaschimsya protsessam s immigratsiei”, Predelnye teoremy teorii veroyatnostei, sbornik statei, Tr. In-ta matematiki : / / AN SSSR, Sib. otd-nie. T. 5, ISSN JSSN 0208-0060, Trudy Instituta matematiki, 5, eds. Otv. red. A. A. Borovkov, Nauka, Sib. otd-nie, Novosibirsk, 1985, 96-103
158. S.V. Nagaev, V.I. Chebotarev, “On accuracy of the Gaussian approximation for distributions of sums of independent Hilbert space valued random variables”, Pyataya Mezhdunarodnaya vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, tezisy dokladov (Vilnyus, 26 iyunya - 1 iyulya 1989 g.), 4, b.i., Vilnyus, 1985, 208-210
159. Nagaev S.V., “Ob analiticheskikh metodakh v teorii tsepei Markova”, Chetvertaya Vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov, 2, eds. E. Gechauskas, Institut matematiki i kibernetiki AN LitSSR, Vilnyus, 1985, 236-238
160. V. Nagaev, V.I. Chebotarev, “A refinement of the error estimate of the normal approximation in a Hilbert space”, Comm. 19th School-Colloq. Probab. Theory and Mat. Statist.,, Abstr. (Bakuriani, 1985), 1985, 37  zmath
161. S. V. Nagaev, M. Kh. Asadullin, “Ob odnoi skheme summirovaniya sluchainogo chisla nezavisimykh sluchainykh velichin s prilozheniem k vetvyaschimsya protsessam s immigratsiei”, Doklady Akademii nauk SSSR, 285:2 (1985), 293296  mathnet  mathscinet  zmath
162. S. V. Nagaev, N. V. Gizbrekht, “A random walk scheme that describes the particle transport phenomenon”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 5 (1985), 103–126  mathnet  mathscinet  zmath
163. S. V. Nagaev, M. Kh. Asadullin, “A scheme for summation of a random number of independent random variables with application to branching processes with immigration”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 5 (1985), 96–103  mathnet  mathscinet  zmath

   1984
164. S.V. Nagaev, V.I. Chebotarev, A refinement of the error estimate of a normal approximation in a Hilbert space, Preprint, IM SO RAN, Novosibirsk, 1984 , 46 pp.  zmath
165. Nagaev, S.V., “BERRY-ESSEEN-TYPE ESTIMATES FOR SUMS OF HILBERT SPACE-VALUED RANDOM-VARIABLES”, DOKLADY AKADEMII NAUK SSSR, 276:6 (1984)  mathnet  mathscinet  zmath  isi (cited: 2)

   1985
166. S. V. Nagaev, “Letter to the editors”, Theory Probab. Appl., 29:1 (1985), 197–198  mathnet  crossref  mathscinet

   1983
167. S. V. Nagaev, “Probabilities of large deviations in Banach spaces”, Math. Notes, 34:2 (1983), 638–640  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  scopus (cited: 1)
168. Nagaev S.V., “On probabilities of large deviations for a Gaussian distribution in a banach-space”, Theory of Probability and its Applications, 27:2 (1983), 430-431  crossref  scopus (cited: 1)
169. Nagaev S.V., “On accuracy of normal approximation for the distribution of a sum of independent Hilbert space valued random variables”, Probability Theory and Mathematical Statistics (Tbilisi, USSR, August 23-29, 1982), Proceedings of the Fourth USSR - Japan Symposium, held at Tbilisi, USSR, August 2329, 1982, 1021, eds. Prokhorov, J.V., Springer, 1983, 461-474 http://www.bookmetrix.com/detail/book/2b65b2ed-742e-49a6-848e-b99814c58142#citations  crossref  mathscinet
170. Yu. G. Kosarev, S.V. Nagaev, “A characteristic property of a power function”, Vychisl. Sistemy, 99, Novosibirsk, 1983, 39-43

   1984
171. Nagaev, S.V., Chebotarev, V.I., “Dependence of the estimate of the rate of convergence to a normal law on the covariance operator - the case of non-identical distributions of terms”, Theory of Probability and its Applications, 28:3 (1984), 631-632  mathnet  crossref  mathscinet  isi

   1983
172. Nagaev, S.V., “On accuracy of normal approximation for distribution of sum of independent Hilbert space valued random variables”, LECTURE NOTES IN MATHEMATICS, 1021 (1983), 461-473  crossref  mathscinet  zmath  isi (cited: 7)

   1982
173. M. Kh. Asadullin, S. V. Nagaev, “Limit theorems for a critical branching process with immigration”, Math. Notes, 32:4 (1982), 750–757  mathnet  crossref  mathscinet  zmath  isi (cited: 2)  scopus (cited: 2)
174. Nagaev S.V., “On distribution of linear functionals in finite-dimensional spaces of large dimension”, Doklady Akademii nauk SSSR, 265 (1982), 295  mathscinet  isi (cited: 1)
175. S. V. Nagaev, “On the distribution of linear functionals in finite-dimensional spaces of large dimension”, Dokl. Akad. Nauk SSSR, 263:2 (1982), 295–297  mathnet  mathscinet  zmath
176. Nagaev, S.V., “AN ERGODIC THEOREM FOR HOMOGENEOUS MARKOV-CHAINS”, DOKLADY AKADEMII NAUK SSSR, 263:1 (1982), 27-30  mathnet  mathscinet  mathscinet  zmath  isi (cited: 2)
177. S. V. Nagaev, “Probability inequalities for sums of independent random variables with values in a Banach space”, Trudy Inst. Mat. Sib. Otd. AN SSSR, 1 (1982), 159–167  mathnet  mathscinet  zmath
178. S. V. Nagaev, “On the asymptotic behaviour of one-sided large deviation probabilities”, Theory Probab. Appl., 26:2 (1982), 362–366 https://epubs.siam.org/doi/10.1137/1126035  mathnet  crossref  mathscinet  zmath  isi (cited: 17)

   1981
179. NAGAEV, SV, “On an asymptotic behavior of a Wiener measure for a narrow-band”, Kartinki po zaprosu THEORY OF PROBABILITY AND ITS APPLICATIONSarchive.siam.org Theory of Probability and Its Applications, 26:3 (1981), 625-626  mathscinet  isi
180. S.V. Nagaev, “On a large deviation probabilities for the Gaussian distribution in a Banach space”, Izv. Akad. Nauk UzSSR. Ser. Fiz.-Mat. Nauk, 1981, no. 5, 18-21  zmath
181. S.V. Nagaev, “Veroyatnostnye neravenstva v banakhovykh prostranstvakh”, Tretya Vilnyusskaya konferentsiya po teorii veroyatnostei i matematicheskoi statistike, Tezisy dokladov (22-27 iyunya 1981, Vilnyus), V nadzagol.: AN SSSR, AN LitSSR, Viln. gos. un-t im. V. Kapsukasa, 2, eds. E. Gechauskas, Institut matematiki i kibernetiki, Vilnyus, 1981, 75-76
182. S.V. Nagaev, Gizbrekht N. V., “Ob odnoi skheme sluchainogo bluzhdaniya, opisyvayuschei perenos chastits”, III Vilnyusskaya konferentsiya po teor. veroyatn. i mat. stat., Tezisy dokladov, 2, eds. E. Gechauskas, Institut matematiki i kibernetiki AN LitSSR, Vilnyus, 1981, 130
183. S.V. Nagaev, M.H. Asadullin, “Limit-theorems for a critical branching-process with immigration”, Theory of probability and its applications, 26:2 (1981), 417-419  mathscinet  isi

   1982
184. S. V. Nagaev, L. V. Han, “Letter to the editors”, Theory Probab. Appl., 26:2 (1982), 434  mathnet  crossref  mathscinet

   1981
185. S. V. Nagaev, L. V. Han, “Limit theorems for a critical Galton–Watson process with migration”, Theory Probab. Appl., 25:3 (1981), 514–525  mathnet  crossref  mathscinet  zmath  isi (cited: 6)

   1980
186. S. V. Nagaev, “On the asymptotic behaviour of the Wiener measure of the narrow strip”, Third Working Conf. Stochastic Differential Systems, Abstr. (Visegrad (Hungary), Sept. 1520, 1980), 1980, 55-56

   1979
187. Nagaev S. V., “Large deviations of sums of independent random variables”, Annals of Probability, 7:5 (1979), 745-789  crossref  mathscinet  zmath  isi (cited: 267)

   1978
188. S.V. Nagaev, V.I. Chebotarev, “On estimates of a convergence rate in the central limit theorem for random vectors taking values in l2”, Mathematical analysis and related topics, Trudy Inst. Mat., Nauka, Novosibirsk, 1978, 153-182

   1977
189. Kh. Batirov, D. V. Manevich, S. V. Nagaev, “The Esseen inequality for sums of a random number of differently distributed random variables”, Math. Notes, 22:1 (1977), 569–571  mathnet  crossref  mathscinet  zmath  isi (cited: 6)  scopus (cited: 5)

   1978
190. N. A. Volodin, S. V. Nagaev, “A remark on the strong law of large numbers”, Theory Probab. Appl., 22:4 (1978), 810–813  mathnet  crossref  mathscinet  zmath  isi (cited: 5)
191. S. V. Nagaev, I. F. Pinelis, “Some inequalities for the distributions of sums of independent random variables”, Theory Probab. Appl., 22:2 (1978), 248–256  mathnet  crossref  mathscinet  zmath  isi (cited: 27)

   1977
192. S.V. Nagaev, I.F. Pinelis, “On large deviations for sums of independent Banach-valued random variables”, Abst. Comm. II Vilnius Conf. Probab. Theory and Math. Statist. Vilnius, 1977, 66-67
193. S.V. Nagaev, V.I. Chebotarev, “Estimates of a convergence rate in the central limit theorem in the l2 in the case of independent coordinates”, II Vilnius Conf. on Probab. Theory and Math. Statist. Vilnius, 1 (1977), Abstr. Comm., 1977, 68-69
194. S. V. Nagaev, M. S. Èppel, “On a local limit theorem for the sums of independent random variables”, Theory Probab. Appl., 21:2 (1977), 384–385  mathnet  crossref  mathscinet  zmath  isi (cited: 2)

   1976
195. Nagaev S.V., “An estimate of the remainder term in multidimensional central limit theorem”, Proceedings of the Third Japan USSR Symposium on Probability Theory - 1976, Springer Ser. Lecture Notes in Mathematics (Japan USSR), 550, eds. Maruyama, G., Prokhorov, J.V., Springer, Berlin, 1976, 419-438 https://link.springer.com/chapter/10.1007/BFb0077505}{link.springer.com/chapter/10.1007/BFb0077505  crossref  mathscinet
196. S.V. Nagaev, S.K. Sakojan, “On a bound for a probability of large deviations”, Limit Theorems and Mathematical Statistics, FAN, Tashkent, 1976, 132-140

   1977
197. S. V. Nagaev, “Letter to the editors”, Theory Probab. Appl., 21:4 (1977), 875  mathnet  crossref  mathscinet  zmath

   1976
198. S. V. Nagaev, V. I. Rotar', “Letter to the editors”, Theory Probab. Appl., 21:1 (1976), 220  mathnet  crossref  mathscinet
199. S. V. Nagaev, N. A. Volodin, “On the strong law of large numbers”, Theory Probab. Appl., 20:3 (1976), 626–631  mathnet  crossref  mathscinet  zmath  isi

   1975
200. S. V. Nagaev, N. V. Vakhrushev, “An estimation of probabilites of large deviations for a critical Galton–Watson process”, Theory Probab. Appl., 20:1 (1975), 181-182  mathnet  crossref  mathscinet  zmath  isi  elib
201. S. V. Nagaev, “A limit theorem for branching processes with immigration”, Theory Probab. Appl., 20:1 (1975), 176–179  mathnet  crossref  mathscinet  zmath  isi (cited: 1)
202. Nagaev S. V., “Nekotorye predelnye teoremy teorii vosstanovleniya”, Teoriya veroyatnostei i ee primenenie, 20:2 (1975), 332344  mathnet  mathscinet  zmath

   1974
203. Nagaev S.V., “Transfer effects for age-dependent discrete-time branching processes. II”, Download PDF Siberian Mathematical Journal, 15:3 (1974), 408415 https://link.springer.com/article/10.1007  crossref  scopus (cited: 2)
204. S.V. Nagaev, I. F. Pinelis, “Some estimates for large deviations and their application to strong law of large numbers”, 15:1 (1974) 153158, Siberian Mathematical Journal, 15:1 (1974), 153158 https://link.springer.com/article/10.1007/BF00968324  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  scopus
205. Nagaev S.V., “Transition phenomena for age-dependent branching processes with discrete time. I”, Siberian Mathematical Journal, 15:2 (1974), 261-281 (to appear)  mathnet  crossref  mathscinet  mathscinet  zmath  scopus (cited: 2)
206. S. V. Nagaev, “Transition phenomena for age-dependent branching processes with discrete time. II”, Siberian Math. J., 15:3 (1974), 408–415  mathnet  crossref  mathscinet  zmath

   1973
207. S. V. Nagaev, V. I. Rotar', “On strengthening of Lyapunov type estimates (the case when summands distributions are close to the normal one)”, Theory Probab. Appl., 18:1 (1973), 107–119  mathnet  crossref  mathscinet  zmath
208. Nagaev S. V., “State of a conduction electron in a crystal in the case of nonlocal interaction with elementary excitations”, Theoretical and Mathematical Physics, 14:1 (1973) , 6774 pp. https://link.springer.com/article/10.1007/BF01035636  crossref  scopus
209. Nagaev S.V., “Large deviations for sums of independent random variables”, Trans. Sixth Prague Conf. Inform. Theory. Statist. Decision Functions. Random Processes, Prague (Prague, 1973), Academy of Sciences, Prague, 1973, 657-674 http://math.nsc.ru/LBRT/g1/nagaev/files/r-13.pdf  mathscinet
210. S. V. Nagaev, “Certain estimates for the maximum sum of independent identically distributed random variables”, Abstr. Comm. Intern. Conf. Probab. Theory and Math. Statist. Vilnius, 2 (1973), 103-104. (Vilnius, Lithuania), 103-104, 1973, 103-104  mathscinet
211. Nagaev S. V., Matematicheskaya statistika, Kurs lektsii dlya studentov matematicheskogo fakulteta, NGU, 1973 , 176 pp.

   1972
212. S. V. Nagaev, “Large deviations for sums of independent , identically distributed random variables”, Dokl. Akad. Nauk SSSR, 206:1 (1972), 25–26  mathnet  mathscinet  zmath

   1973
213. S. V. Nagaev, “On necessary and sufficient conditions for the strong law of large numbers”, Theory Probab. Appl., 17:4 (1973), 573–581  mathnet  crossref  mathscinet  zmath

   1972
214. Nagaev S.V., “On necessary and sufficient conditions for the strong law of large numbers”, Second Japan-USSR Symp. Probab. Theory, (Kyoto), 1972, 53-54  mathscinet
215. S.V. Nagaev, V.I. Rotar, “On an estimate of the speed of convergence in the central limit theorem using pseudomoments”, Theory Probab. Appl., 17:2 (1972), 365-366
216. Nagaev S. V., Teoriya veroyatnostei, NGU, Novosibirsk, 1972 , 155 pp.

   1971
217. S. V. Nagaev, V. I. Rotar', “On the estimates of Ljapunov type for distributions of sums close to normal”, Dokl. Akad. Nauk SSSR, 199:4 (1971), 778–779  mathnet  mathscinet  zmath
218. D. H. Fuc, S. V. Nagaev, “Probability inequalities for sums of independent random variables”, Theory Probab. Appl., 16:4 (1971), 643–660  mathnet  crossref  mathscinet  zmath
219. S. V. Nagaev, “An estimate of the convergence rate for the absorption probability”, Theory Probab. Appl., 16:1 (1971), 147–154  mathnet  crossref  mathscinet  zmath
220. Nagaev S. V., “A limit theorem for a supercritical branching process”, Mathematical notes of the Academy of Sciences of the USSR, 9:5 (1971) , 338342 pp. http://www.nnn.ru/~ivanov/paper1.pdf}{www.nnn.ru/~ivanov/paper1.pdf}{www.nnn.ru/~ivanov/paper1.pdf  zmath

   1970
221. S. V. Nagaev, “Asymptotical expansions for the maximum of sums of independent random variables”, Theory Probab. Appl., 15:3 (1970), 514–515  mathnet  crossref  mathscinet  zmath
222. S. V. Nagaev, “On the speed of convergence in a boundary problem. II”, Theory Probab. Appl., 15:3 (1970), 403–429 https://epubs.siam.org/doi/abs/10.1137/1115047  mathnet  crossref  mathscinet  zmath
223. S. V. Nagaev, “On the convergence speed of distribution of maximum sums of independent random variables”, Theory Probab. Appl., 15:2 (1970), 309–314 https://epubs.siam.org/doi/abs/10.1137/1115036  mathnet  crossref  mathscinet  zmath
224. S. V. Nagaev, “On the speed of convergence in a boundary problem. I”, Theory Probab. Appl., 15:2, https://epubs.siam.org/doi/abs/10.1137/1115026 (1970), 163–186  mathnet  crossref  mathscinet  zmath
225. S.V. Nagaev, “On estimation of a convergence rate in boundary problems”, Proc. Sixth Summer Math. School on Probab. and Math. Statist., (Kiev, 1970), 1970, 312 325
226. S. V. Nagaev, “Asymptotic expansions for the distribution function of the maximum of a sum of independent identically distributed random quantities”, Siberian Mathematical Journal, 11:2 (1970), 288309  mathnet  crossref  mathscinet  mathscinet  zmath  zmath  scopus (cited: 3)

   1969
227. S. V. Nagaev, “Letter to the editors”, Theory Probab. Appl., 14:4 (1969), 726  mathnet  crossref  mathscinet
228. Nagaev S.V., “Asymptotic expansions for the distribution of the maximum sum of independent random variables”, First USSR-Japan Symp. Probab. Theory, 1969, 200 208
229. Nagaev, S. V., “Estimating the rate of convergence for the distribution of the maximum sums of independent random quantities”, Siberian Mathematical Journal, 10:3 (1969), 443-458  mathnet  crossref  mathscinet  mathscinet  zmath  scopus (cited: 3)

   1968
230. S. V. Nagaev, “Some renewal theorems”, Theory Probab. Appl., 13:4 (1968), 547–563 https://epubs.siam.org/doi/abs/10.1137/1113073  mathnet  crossref  mathscinet  zmath
231. S. V. Nagaev, “An estimation of a convergence rate for the absorption probability in case of a null expectation”, Theory Probab. Appl., 13:1 (1968), 160–164  mathnet  crossref  mathscinet  zmath
232. S.V. Nagaev, “On a theorem of Robbins”, Izv. Akad. Nauk UzSSR, Ser. Fiz.-Mat. Nauk, 1968, no. 3, 15-18  zmath
233. S.V. Nagaev, R. Mukhamedkhanova, “Certain remarks apropos of earlier published limit theorems in the theory of branching processes”, Probability Models and Quality Control, FAN, Tashkent, 1968, 46-49

   1967
234. J.G. Kosarev, S.V., Nagaev, “Time losses in synchronization in homogenious computing systems”, Vychisl. Systemy, 1967, no. 24, 21-39  mathscinet
235. Nagaev S.V., “Estimation of the mean number of direct descendants of a particle in a branching random process”, Theory of Probability and its Applications, 12:2 (1967), 314-320  mathnet  crossref  mathscinet  zmath

   1966
236. S.V. Nagaev, “A rate of a convergence to the uniform distribution on a segment”, Limit Theorems and Statistical Inference, FAN, Tashkent, 1966, 113-117
237. S.V. Nagaev, R.G. Mukhamedkhanova, “Some limit theorems of theory of branching processes”, Limit Theorems and Statistical Inference, FAN, Tashkent, 1966, 90-112
238. Nagaev S.V., Muhamedhanova R., “Transition phenomena in branching random processes with discrete time”, Limit Theorems Statist. Inference, Tashkent, 1966, 83-89
239. A. A. Borovkov, S. V. Nagaev, B. A. Rogozin, Theory Probab. Appl., 11:3 (1966), 488–494  mathnet  crossref  mathscinet

   1965
240. S. V. Nagaev, “Some limit theorems for large deviations”, Theory Probab. Appl., 10:2 (1965), 214–235  mathnet  crossref  mathscinet  zmath
241. S.V. Nagaev, “Ergodic theorems for discrete-time Markov processes”, Sib. Mat. Zh., 6:2 (1965), 413-432  mathnet  mathscinet  zmath

   1964
242. Nagaev S.V., “Limit theorems for large deviations”, Winter School in Theory of Probability and Math. Statistics held in Užgorod (Kiev), eds. W. Hoeffding, Izdat. Akad. Nauk Ukrain. SSR, Kiev, 1964, 147163  mathscinet
243. S.V. Nagaev, “Limit theorems for large deviations”, Winter School in Theory of Probability and Math. Statistics held in Užgorod,, Izdat. Akad. Nauk Ukrain. SSR,, Kiev, 1964, 147163

   1963
244. S. V. Nagaev, “An integral limit theorem for large deviations”, Soviet Mathematics Dokl., 148:2 (1963), 280  mathnet  mathscinet  zmath

   1962
245. S.V. Nagaev, Limit theorems for Markov processes with discrete time, Thesis for the degree of Doctor of Physical and Mathematical Sciences, Acad. Sciences UzSSR, Tashkent, 1962 , 148 pp.
246. Nagaev S.V., “Some problems in the theory of Markov processes in discrete time”, Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist (Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist. Vilnius, 1960), Gospolitnauchizdat, Vilnyus, 1962, 145147  mathscinet
247. Nagaev S.V., “Some problems in the theory of Markov processes in discrete time”, Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist (Proc. Sixth All-Union Conf. Theory Prob. and Math. Statist. (Vilnius, 1960), (In Russian), Gosudarstv. Izdat. Političesk. i Naučn. Lit., Vilnius, 1962, 145147
248. S.V. Nagaev, “A central limit theorem for discrete-time Markov processes”, Izv. Akad. Nauk UzSSR, Ser. Fiz-Mat. Nauk, 1962, no. 2, 12-20  zmath
249. S.V. Nagaev, “Local limit theorems for large deviations”, Vestnik Leningrad. Univ. Math., Mech., Astron., 1:8 (1962), 80-88  zmath

   1961
250. Nagaev S.V., “Some questions of the theory of homogenious Markov processes with discrete time”, Soviet Mathematics, 2:2 (1961), 867 869  mathnet  mathscinet  mathscinet  zmath
251. S. V. Nagaev, “More Exact Statement of Limit Theorems for Homogeneous Markov Chains”, Theory Probab. Appl., 6:1 (1961), 62–81 https://epubs.siam.org/doi/abs/10.1137/1106005  mathnet  crossref  mathscinet
252. S.V. Nagaev, “The simplified proof of the factorization theorem”, Trudy Inst. Mat. Akad. Nauk UzSSR, 22:3 (1961)

   1960
253. S.V. Nagaev, “Local limit theorems for large deviations”, Theory Probab. Appl., 5:2 (1960) , 2 pp.
254. S.V. Nagaev, “Limit theorems for large deviations in the theory of homogenious Markov chains”, Proc. Fifth All -Union Conf. Probab. and Math. Statist. (Yerevan, September 19-25, 1958), eds. G. A. Ambartsumian et al., Publishing House of the Academy of Sciences Arm. SSR, Yerevan, 1960, 52-54

   1958
255. S.V. Nagaev, Some limit theorems for homogeneous Markov chains, PhD thesis, (In Russian), Tashkent State University, Tashkent, 1958 , 56 pp.

   1957
256. S. V. Nagaev, “On some limit theorems for homogenious Markov chains”, Dokl. Akad. Nauk SSSR, 115:2 (1957), 237–239  mathnet  mathscinet  zmath
257. S. V. Nagaev, “Some Limit Theorems for Stationary Markov Chains”, Theory Probab. Appl., 2:4 (1957), 378–406 https://epubs.siam.org/doi/10.1137/1102029  mathnet  crossref  mathscinet  mathscinet
258. Nagaev S.V., “On the local limit theorem for a sequence of random variables connected to a simple homogeneous Markov chain with a countable set of possible values”, Probability Theory and Its Application, 2:1 (1957) , 3 pp., (In Russian)  zmath
259. Nagaev S.V., Some limit theorems for homogeneous Markov chains, Abstract of thesis for the degree of candidate of physical and mathematical sciences, V.I. Lenin Central Asian State University. Faculty of Physics and Mathematics, Tashkent: Publishing House Acad. Sciences UzSSR, 1957, Tashkent, 1957
260. S.V. Nagaev, “On a local limit theorem for the sequence or random variables forming a simple homogenious Markov chain with a denumerable set of admissible values”, Izv. Akad. Nauk UzSSR, Ser. Fiz-Mat. Nauk, 3 (1957), 71-72

Presentations in Math-Net.Ru
1. The Berry - Esseen bound for general Markov chains
S. V. Nagaev
Principle Seminar of the Department of Probability Theory, Moscow State University
April 4, 2018
2. Ergodic theorems for Markov chains
S. V. Nagaev
Principle Seminar of the Department of Probability Theory, Moscow State University
April 5, 2017 16:45
3. The spectral method and Markov chains with an arbitrary phase space
S. V. Nagaev
Principle Seminar of the Department of Probability Theory, Moscow State University
April 8, 2015

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021