RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Korableva, Vera Vladimirovna

Statistics Math-Net.Ru
Total publications: 17
Scientific articles: 17

Number of views:
This page:628
Abstract pages:2383
Full texts:812
References:420
Professor
Doctor of physico-mathematical sciences (2011)
Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
Birth date: 07.12.1958
E-mail:
Website: http://www.csu.ru/Lists/List4/sotrudnik.aspx?ID=375
Keywords: finite simple group; group of Lie type; parabolic representation; permutation representation; rank of representation; parabolic maximal subgroup.

Subject:

For all finite simple exceptional groups of Lie type the ranks, degrees, subdegrees, and double stabilizers of primitive parabolic permutation representations are calculated. In last paper we study classical groups of Lie type $A_l(q)$. We calculate the ranks of the permutation representations on the cosets of parabolic maximal subgroups for $A_l(q)$.

Biography

Graduated from Faculty of Mathematics Chelyabinsk State University (CSU) in 1981 (department of algebra and geometry). Ph. D. thesis was defended in 2000. A list of my works contains 20 titles.

   
Main publications:
  • Korableva V. V. Ranks of the primitive parabolic permutation representations of classical groups of Lie type $A_l(q)$ // Proc. Steklov Inst. Math., suppl. 2, 2001, 150–155, (transl. from Trudy Inst. Matem. i Mekh. Uro RAN, 2001, 8(1)).

http://www.mathnet.ru/eng/person17598
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/664827

Publications in Math-Net.Ru
2019
1. V. V. Korableva, “On chief factors of parabolic maximal subgroups of the group $ ^2F_4(2^{2n+1})$”, Trudy Inst. Mat. i Mekh. UrO RAN, 25:4 (2019),  99–106  mathnet  elib
2018
2. V. V. Korableva, “A strong version of the Sims conjecture for primitive parabolic permutation representations of finite simple groups Lie types $G_2, F_4$ and $E_6$”, Sib. Èlektron. Mat. Izv., 15 (2018),  1595–1604  mathnet
2017
3. V. V. Korableva, “On the chief factors of parabolic maximal subgroups of special finite simple groups of exceptional Lie type”, Sibirsk. Mat. Zh., 58:6 (2017),  1332–1340  mathnet  elib; Siberian Math. J., 58:6 (2017), 1034–1041  isi  scopus
2015
4. V. V. Korableva, “On the chief factors of maximal parabolic subgroups of twisted classical groups”, Sibirsk. Mat. Zh., 56:5 (2015),  1100–1110  mathnet  elib; Siberian Math. J., 56:5 (2015), 879–887  isi  elib  scopus
5. V. V. Korableva, “On chief factors of parabolic maximal subgroups of the group $ ^3D_4(q^3)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  187–191  mathnet  mathscinet  elib
2014
6. V. V. Korableva, “On the chief factors of parabolic maximal subgroups in finite simple groups of normal Lie type”, Sibirsk. Mat. Zh., 55:4 (2014),  764–782  mathnet  mathscinet; Siberian Math. J., 55:4 (2014), 622–638  isi  scopus
7. V. V. Korableva, “On chief factors of parabolic maximal subgroups of the groups $^2E_6(q^2)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  230–237  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 156–163  isi  scopus
2010
8. V. V. Korableva, “Primitive parabolic permutation representations for finite simple orthogonal groups in odd dimensions”, Algebra Logika, 49:5 (2010),  615–629  mathnet  mathscinet  zmath; Algebra and Logic, 49:5 (2010), 416–425  isi  scopus
9. V. V. Korableva, “Primitive parabolic permutation representations for finite symplectic groups”, Algebra Logika, 49:3 (2010),  366–378  mathnet  mathscinet  zmath; Algebra and Logic, 49:3 (2010), 246–255  isi  scopus
10. V. V. Korableva, “Primitive parabolic permutation representations of the groups $P\Omega^\pm_{2m}(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  168–181  mathnet  elib
2009
11. V. V. Korableva, “Primitive parabolic permutation representations of finite special linear and unitary groups”, Trudy Inst. Mat. i Mekh. UrO RAN, 15:2 (2009),  114–124  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 267, suppl. 1 (2009), S100–S110  isi
2008
12. V. V. Korableva, “The ranks of primitive parabolic permutation representations of the simple groups $B_l(q)$, $C_l(q)$ and $D_l(q)$”, Sibirsk. Mat. Zh., 49:2 (2008),  340–356  mathnet  mathscinet  zmath  elib; Siberian Math. J., 49:2 (2008), 273–286  isi  scopus
13. V. V. Korableva, “Примитивные параболические подстановочные представления простых групп $A_l(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:4 (2008),  70–81  mathnet  elib
2001
14. V. V. Korableva, “Ranks of the primitive parabolic permutation representations of classical groups of Lie type $A_l(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 7:2 (2001),  188–193  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 2001no. , suppl. 2, S150–S155
2000
15. V. V. Korableva, “Parabolic permutation representations of the group $ ^2E_6(q^2)$”, Mat. Zametki, 67:6 (2000),  899–912  mathnet  mathscinet  zmath; Math. Notes, 67:6 (2000), 758–770  isi
16. V. V. Korableva, “Parabolic permutation representations of the groups $^2F_4(q)$ and $^3D_4(q^3)$”, Mat. Zametki, 67:1 (2000),  69–76  mathnet  mathscinet  zmath; Math. Notes, 67:1 (2000), 55–60  isi
1998
17. V. V. Korableva, “Parabolic permutation representations of the group $F_4(q)$”, Trudy Inst. Mat. i Mekh. UrO RAN, 5 (1998),  39–59  mathnet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020