RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Kel'manov, Alexander Vasiljevich

Statistics Math-Net.Ru
Total publications: 71
Scientific articles: 71

Number of views:
This page:2724
Abstract pages:15588
Full texts:3380
References:2299
Kel'manov, Alexander Vasiljevich

Main Scientist Researcher
Doctor of physico-mathematical sciences (1994)
Speciality: 05.13.18 (Mathematical modelling, calculating methods, and the program systems)
Birth date: 25.04.1952
Phone: +7 (383) 329 75 73
Fax: +7 (383) 333 25 98
E-mail:
Website: http://math.nsc.ru/~kelmanov/index.htm
Keywords: pattern recognition, operations research, signal processing.
UDC: 519.6, 519.2, 519.1, 519.7, 621.391, 519.71

Subject:

Scientific concerns:
1) Mathematical methods of pattern recognition;
2) Algorithms for noiseproof processing and recognition of numeric sequences (signals);
3) Processing, recognition and synthesizing of speech signals.

The main outcomes:
1) Effective (polynomial) a posteriori algorithms for processing (detection, distinguishing, recovery, clearing) and recognition of numeric quasiperiodic sequences; probabilistic estimations of accuracy for these algorithms and estimations of their temporary and capacitive complexity (1994–2002);
2) The Russian linguistic resource for training some systems of recognition and synthesizing of an oral speech (1997–1999);
3) Fundamentals of the theory for processing and recognition of speech signals under conditions of non-linear amplitude distortions (convertible and irreversible) (1986–1993);
4) Mathematical model for the speech signal formation under 3-grams interplay of phonemes in continuous speech (1990–1993);
5) Mathematical methods and algorithms for speech recognition system resistant to external acoustic noises, non-linear amplitude distortions of a signal, and such hindering as: vibrational distortions, overloads, and changes of a structure of a respiratory mix (1982–1989).

Biography

Education and academic degrees 1994
AFFILIATIONS Member of the Pattern Recognition Russian Association. Member of the Acoustical Society of Russia. Member of the State Institution Russian Research Scientific–Consulting Center for Expertise.
GRANTS 1993–2002 Russian Foundation for Basic Research (scientific chief of six grants).

   
Main publications:
  • A. V. Kel'manov, S. A. Khamidullin. Posterior detection of a given number of identical subsequences in a quasi-periodic sequence // Computational Mathematics and Mathematical Physics, vol. 41, no 5, 2001, p. 762–774.
  • A. V. Kel'manov, L. V. Okol'nishnikova. A posteriori simultaneous detection and discrimination of subsequences in a quasiperiodic sequence // Pattern Recognition and Image Analysis, vol. 11, no. 3, 2001, p. 505–520.
  • A. V. Kel'manov, S. A. Khamidullin. Recognizing a quasiperiodic sequence composed of a given number of truncated subsequences // Pattern Recognition and Image Analysis, vol. 11, no. 4, 2001, p. 718–731.
  • A. V. Kel'manov. Probability Bounds of the Incorrect Recognition for a Quasi-Periodic Sequence of a Predefined Number of Identical Subsequences // Pattern Recognition and Image Analysis. 2000. vol. 10, no. 2, p. 195–202.
  • A. V. Kel'manov, S. A. Khamidullin. Recognizing a Quasiperiodic Sequence Composed of a Given Number of Identical Subsequences // Pattern Recognition and Image Analysis, 2000, vol. 10, no. 1, p. 127–142.

http://www.mathnet.ru/eng/person17629
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/646392
http://elibrary.ru/author_items.asp?spin=3224-9730
http://orcid.org/0000-0001-7757-7228
http://www.researcherid.com/rid/Q-9189-2016
http://www.scopus.com/authid/detail.url?authorId=6505938690
Full list of publications: Download file (168 kB)

Publications in Math-Net.Ru
2019
1. A. V. Kel'manov, A. V. Panasenko, V. I. Khandeev, “Exact algorithms of searching for the largest size cluster in two integer 2-clustering problems”, Sib. Zh. Vychisl. Mat., 22:2 (2019),  121–136  mathnet  elib; Num. Anal. Appl., 12:2 (2019), 105–115  isi  scopus
2018
2. A. V. Kel'manov, A. V. Pyatkin, V. I. Khandeev, “On the complexity of some max-min clustering problems”, Trudy Inst. Mat. i Mekh. UrO RAN, 24:4 (2018),  189–198  mathnet  elib
3. A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “A randomized algorithm for a sequence 2-clustering problem”, Zh. Vychisl. Mat. Mat. Fiz., 58:12 (2018),  2169–2178  mathnet  elib; Comput. Math. Math. Phys., 58:12 (2018), 2078–2085  isi  scopus
4. A. V. Kel'manov, A. V. Pyatkin, “Np-hardness of some Euclidean problems of partitioning a finite set of points”, Zh. Vychisl. Mat. Mat. Fiz., 58:5 (2018),  852–856  mathnet  elib; Comput. Math. Math. Phys., 58:5 (2018), 822–826  isi  scopus
5. A. V. Kel'manov, A. V. Motkova, “Polynomial-time approximation algorithm for the problem of cardinality-weighted variance-based 2-clustering with a given center”, Zh. Vychisl. Mat. Mat. Fiz., 58:1 (2018),  136–142  mathnet  elib; Comput. Math. Math. Phys., 58:1 (2018), 130–136  isi  scopus
2017
6. A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “Exact pseudopolynomial algorithm for one sequence partitioning problem”, Avtomat. i Telemekh., 2017, 1,  80–90  mathnet  elib; Autom. Remote Control, 78:1 (2017), 67–74  isi  scopus
7. A. V. Kelmanov, S. M. Romanchenko, S. A. Khamidullin, “An approximation scheme for a problem of finding a subsequence”, Sib. Zh. Vychisl. Mat., 20:4 (2017),  379–392  mathnet  elib; Num. Anal. Appl., 10:4 (2017), 313–323  isi  scopus
8. A. E. Galashov, A. V. Kel'manov, “On pseudopolynomial-time solvability of a quadratic Euclidean problem of finding a family of disjoint subsets”, Sib. Zh. Vychisl. Mat., 20:1 (2017),  15–22  mathnet  mathscinet  elib; Num. Anal. Appl., 10:1 (2017), 11–16  isi  scopus
9. A. V. Kel'manov, A. V. Motkova, V. V. Shenmaier, “Approximation scheme for the problem of weighted 2-partitioning with a fixed center of one cluster”, Trudy Inst. Mat. i Mekh. UrO RAN, 23:3 (2017),  159–170  mathnet  elib; Proc. Steklov Inst. Math. (Suppl.), 303, suppl. 1 (2018), 136–145  isi
10. A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, V. I. Khandeev, “Approximation algorithm for the problem of partitioning a sequence into clusters”, Zh. Vychisl. Mat. Mat. Fiz., 57:8 (2017),  1392–1400  mathnet  elib; Comput. Math. Math. Phys., 57:8 (2017), 1376–1383  isi  scopus
2016
11. A. V. Kel'manov, A. V. Motkova, “Exact pseudopolinomial algorithms for a balanced $2$-clustering problem”, Diskretn. Anal. Issled. Oper., 23:3 (2016),  21–34  mathnet  mathscinet  elib; J. Appl. Industr. Math., 10:3 (2016), 349–355  scopus
12. A. V. Kel'manov, S. A. Khamidullin, V. I. Khandeev, “Fully polynomial-time approximation scheme for a sequence $2$-clustering problem”, Diskretn. Anal. Issled. Oper., 23:2 (2016),  21–40  mathnet  mathscinet  elib; J. Appl. Industr. Math., 10:2 (2016), 209–219  scopus
13. A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, V. I. Khandeev, “An approximation algorithm for the problem of partitioning a sequence into clusters with constraints on their cardinalities”, Trudy Inst. Mat. i Mekh. UrO RAN, 22:3 (2016),  144–152  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 299, suppl. 1 (2017), 88–96  isi  scopus
14. A. V. Eremeev, A. V. Kel'manov, A. V. Pyatkin, “On the complexity and approximability of some Euclidean optimal summing problems”, Zh. Vychisl. Mat. Mat. Fiz., 56:10 (2016),  1831–1836  mathnet  elib; Comput. Math. Math. Phys., 56:10 (2016), 1813–1817  isi  scopus
15. A. V. Kel'manov, A. V. Pyatkin, “On the complexity of some quadratic Euclidean 2-clustering problems”, Zh. Vychisl. Mat. Mat. Fiz., 56:3 (2016),  498–504  mathnet  elib; Comput. Math. Math. Phys., 56:3 (2016), 491–497
16. A. V. Kel'manov, V. I. Khandeev, “Fully polynomial-time approximation scheme for a special case of a quadratic Euclidean 2-clustering problem”, Zh. Vychisl. Mat. Mat. Fiz., 56:2 (2016),  332–340  mathnet  elib; Comput. Math. Math. Phys., 56:2 (2016), 334–341  isi  scopus
2015
17. A. V. Kel'manov, V. I. Khandeev, “An exact pseudopolynomial algorithm for a bi-partitioning problem”, Diskretn. Anal. Issled. Oper., 22:4 (2015),  50–62  mathnet  mathscinet  elib; J. Appl. Industr. Math., 9:4 (2015), 497–502
18. A. V. Dolgushev, A. V. Kel'manov, V. V. Shenmaier, “Polynomial-time approximation scheme for a problem of partitioning a finite set into two clusters”, Trudy Inst. Mat. i Mekh. UrO RAN, 21:3 (2015),  100–109  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 295, suppl. 1 (2016), 47–56  isi
19. A. V. Kel'manov, S. A. Khamidullin, “An approximation polynomial-time algorithm for a sequence bi-clustering problem”, Zh. Vychisl. Mat. Mat. Fiz., 55:6 (2015),  1076–1085  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 55:6 (2015), 1068–1076  isi  elib  scopus
20. A. V. Kel'manov, V. I. Khandeev, “A randomized algorithm for two-cluster partition of a set of vectors”, Zh. Vychisl. Mat. Mat. Fiz., 55:2 (2015),  335–344  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 55:2 (2015), 330–339  isi  elib  scopus
2014
21. A. E. Galashov, A. V. Kel'manov, “A $2$-approximate algorithm to solve one problem of the family of disjoint vector subsets”, Avtomat. i Telemekh., 2014, 4,  5–19  mathnet; Autom. Remote Control, 75:4 (2014), 595–606  isi  scopus
22. A. A. Ageev, A. V. Kel'manov, A. V. Pyatkin, “Complexity of the Euclidean max cut problem”, Diskretn. Anal. Issled. Oper., 21:4 (2014),  3–11  mathnet  mathscinet; J. Appl. Industr. Math., 8:4 (2014), 453–457
23. A. V. Kel'manov, S. M. Romanchenko, “FPTAS for solving a problem of search for a vector subset”, Diskretn. Anal. Issled. Oper., 21:3 (2014),  41–52  mathnet  mathscinet; J. Appl. Industr. Math., 8:3 (2014), 329–336
24. A. V. Kelmanov, S. A. Khamidullin, “Approximation algorithm for one problem of partitioning a sequence”, Diskretn. Anal. Issled. Oper., 21:1 (2014),  53–66  mathnet  mathscinet; J. Appl. Industr. Math., 8:2 (2014), 236–244  scopus
25. E. Kh. Gimadi, A. V. Kel'manov, A. V. Pyatkin, M. Yu. Khachai, “Efficient algorithms with performance estimates for some problems of finding several cliques in a complete undirected weighted graph”, Trudy Inst. Mat. i Mekh. UrO RAN, 20:2 (2014),  99–112  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 289, suppl. 1 (2015), 88–101  isi  scopus
2013
26. A. V. Kelmanov, V. I. Khandeev, “A $2$-approximation polynomial algorithm for one clustering problem”, Diskretn. Anal. Issled. Oper., 20:4 (2013),  36–45  mathnet  mathscinet; J. Appl. Industr. Math., 7:4 (2013), 515–521
27. A. V. Kel'manov, A. V. Pyatkin, “On the complexity of some vector sequence clustering problems”, Diskretn. Anal. Issled. Oper., 20:2 (2013),  47–57  mathnet  mathscinet; J. Appl. Industr. Math., 7:3 (2013), 363–369
28. I. I. Eremin, E. Kh. Gimadi, A. V. Kel'manov, A. V. Pyatkin, M. Yu. Khachai, “$2$-approximate algorithm for finding a clique with minimum weight of vertices and edges”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:2 (2013),  134–143  mathnet  mathscinet  elib; Proc. Steklov Inst. Math. (Suppl.), 284, suppl. 1 (2014), 87–95  isi  scopus
29. A. V. Kel'manov, L. V. Mikhailova, “Recognition of a sequence as a structure containing series of recurring vectors from an alphabet”, Zh. Vychisl. Mat. Mat. Fiz., 53:7 (2013),  1212–1224  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 53:7 (2013), 1044–1055  isi  elib  scopus
30. A. V. Kel'manov, S. M. Romanchenko, S. A. Khamidullin, “Точные псевдополиномиальные алгоритмы для некоторых труднорешаемых задач поиска подпоследовательности векторов”, Zh. Vychisl. Mat. Mat. Fiz., 53:1 (2013),  143–153  mathnet  elib
2012
31. A. V. Kel'manov, S. M. Romanchenko, “Pseudopolynomial algorithms for certain computationally hard vector subset and cluster analysis problems”, Avtomat. i Telemekh., 2012, 2,  156–162  mathnet; Autom. Remote Control, 73:2 (2012), 349–354  isi  scopus
32. A. V. Kel'manov, S. M. Romanchenko, S. A. Khamidullin, “Approximation algorithms for some NP-hard problems of searching a vectors subsequence”, Diskretn. Anal. Issled. Oper., 19:3 (2012),  27–38  mathnet  mathscinet; J. Appl. Industr. Math., 6:4 (2012), 443–450
33. A. V. Kel'manov, A. V. Pyatkin, “О сложности некоторых задач выбора подпоследовательности векторов”, Zh. Vychisl. Mat. Mat. Fiz., 52:12 (2012),  2284–2291  mathnet
2011
34. A. V. Dolgushev, A. V. Kel'manov, “An approximation algorithm for one problem of cluster analysis”, Diskretn. Anal. Issled. Oper., 18:2 (2011),  29–40  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 5:4 (2011), 551–558  scopus
35. A. V. Kel'manov, S. M. Romanchenko, “The approximation algorithm for one problem of searching for subset of vectors”, Diskretn. Anal. Issled. Oper., 18:1 (2011),  61–69  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 6:1 (2012), 90–96  scopus
36. A. V. Kel'manov, “On the complexity of some cluster analysis problems”, Zh. Vychisl. Mat. Mat. Fiz., 51:11 (2011),  2106–2112  mathnet  mathscinet; Comput. Math. Math. Phys., 51:11 (2011), 1983–1988  isi  scopus
2010
37. A. V. Kel'manov, A. V. Pyatkin, “NP-completeness of some problems of a vectors subset choice”, Diskretn. Anal. Issled. Oper., 17:5 (2010),  37–45  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 5:3 (2011), 352–357  scopus
38. A. V. Dolgushev, A. V. Kel'manov, “On the issue of algorithmic complexity of one cluster analysis problem”, Diskretn. Anal. Issled. Oper., 17:2 (2010),  39–45  mathnet  mathscinet  zmath
39. A. V. Kel'manov, “The $NP$-completeness of some problems of searching for vector subsets”, Trudy Inst. Mat. i Mekh. UrO RAN, 16:3 (2010),  121–129  mathnet  elib
40. A. V. Kel'manov, “On the complexity of some data analysis problems”, Zh. Vychisl. Mat. Mat. Fiz., 50:11 (2010),  2045–2051  mathnet; Comput. Math. Math. Phys., 50:11 (2010), 1941–1947  isi  scopus
2009
41. A. V. Kel'manov, L. V. Mikhaylova, S. A. Khamidullin, “On one problem of searching for tuples of fragments in a numerical sequence”, Diskretn. Anal. Issled. Oper., 16:4 (2009),  31–46  mathnet  mathscinet  zmath
42. A. V. Kel'manov, S. A. Khamidullin, “On one recognition problem of vector alphabet generating a sequence with a quasi-periodical structure”, Sib. Zh. Vychisl. Mat., 12:3 (2009),  275–287  mathnet; Num. Anal. Appl., 2:2 (2009), 220–229  scopus
43. A. V. Kel'manov, A. V. Pyatkin, “Complexity of certain problems of searching for subsets of vectors and cluster analysis”, Zh. Vychisl. Mat. Mat. Fiz., 49:11 (2009),  2059–2065  mathnet  mathscinet; Comput. Math. Math. Phys., 49:11 (2009), 1966–1971  isi  scopus
2008
44. A. V. Kel'manov, A. V. Pyatkin, “On one variant of the vectors subset choice problem”, Diskretn. Anal. Issled. Oper., 15:5 (2008),  20–34  mathnet  mathscinet  zmath; J. Appl. Industr. Math., 3:4 (2009), 447–455  scopus
45. A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, “Распознавание квазипериодической последовательности, включающей повторяющийся набор фрагментов”, Sib. Zh. Ind. Mat., 11:2 (2008),  74–87  mathnet  mathscinet
46. A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, “Optimal detection of a recurring tuple of reference fragments in a quasi-periodic sequence”, Sib. Zh. Vychisl. Mat., 11:3 (2008),  311–327  mathnet; Num. Anal. Appl., 1:3 (2008), 255–268
47. A. V. Kel'manov, “Off-line detection of a quasi-periodically recurring fragment in a numerical sequence”, Trudy Inst. Mat. i Mekh. UrO RAN, 14:2 (2008),  81–88  mathnet  zmath  elib; Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S84–S92  isi  scopus
48. A. V. Kel'manov, L. V. Mikhailova, S. A. Khamidullin, “A posteriori joint detection of a recurring tuple of reference fragments in a quasi-periodic sequence”, Zh. Vychisl. Mat. Mat. Fiz., 48:12 (2008),  2247–2260  mathnet  mathscinet; Comput. Math. Math. Phys., 48:12 (2008), 2276–2288  isi  scopus
49. A. V. Kel'manov, L. V. Mikhailova, “A posteriori joint detection of reference fragments in a quasi-periodic sequence”, Zh. Vychisl. Mat. Mat. Fiz., 48:5 (2008),  899–915  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 48:5 (2008), 850–865  isi  scopus
2007
50. A. V. Kel'manov, L. V. Mikhailova, “Recognition of a numerical sequence that includes series of quasiperiodically repeating standard fragments”, Sib. Zh. Ind. Mat., 10:4 (2007),  61–75  mathnet  mathscinet
51. A. V. Kel'manov, S. A. Khamidullin, “Optimal detection of a given number of unknown quasiperiodic fragments in a numerical sequence”, Sib. Zh. Vychisl. Mat., 10:2 (2007),  159–175  mathnet
2006
52. A. V. Kel'manov, S. A. Khamidullin, “A posteriori detection of a given number of unknown quasiperiodic fragments in a numerical sequence”, Sib. Zh. Ind. Mat., 9:3 (2006),  50–65  mathnet  mathscinet
53. A. V. Kel'manov, S. A. Khamidullin, “Joint a posteriori detection and identification of quasiperiodic fragments in a sequence from pieces of them”, Sib. Zh. Ind. Mat., 9:2 (2006),  55–74  mathnet  mathscinet
54. E. Kh. Gimadi, A. V. Kel'manov, M. A. Kelmanova, S. A. Khamidullin, “A posteriori detection of a quasiperiodic fragment with a given number of repetitions in a numerical sequence”, Sib. Zh. Ind. Mat., 9:1 (2006),  55–74  mathnet  mathscinet
55. A. V. Kel'manov, L. V. Mikhailova, “Joint detection of a given number of reference fragments in a quasi-periodic sequence and its partition into segments containing series of identical fragments”, Zh. Vychisl. Mat. Mat. Fiz., 46:1 (2006),  172–189  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 46:1 (2006), 165–181  scopus
2005
56. A. V. Kel'manov, L. V. Mikhailova, “Recognition of a numerical sequence that includes series of quasiperiodic repeating standard fragments. The case of a known number of fragments”, Sib. Zh. Ind. Mat., 8:3 (2005),  69–86  mathnet  mathscinet  zmath
57. A. V. Kel'manov, S. A. Khamidullin, “Joint a posteriori detection and identification of a given number of quasiperiodic fragments in a sequence from pieces of them”, Sib. Zh. Ind. Mat., 8:2 (2005),  83–102  mathnet  mathscinet
2004
58. A. V. Kel'manov, L. V. Mikhailova, “Simultaneous detection in a quasiperiodic sequence of a given number of fragments from a standard set and its partition into sections that include series of identical fragments”, Sib. Zh. Ind. Mat., 7:4 (2004),  71–91  mathnet  mathscinet  zmath
59. A. V. Kel'manov, S. A. Khamidullin, “Recognition of a numerical sequence from fragments of a quasiperiodically repeating standard sequence”, Sib. Zh. Ind. Mat., 7:2 (2004),  68–87  mathnet  mathscinet  zmath
2003
60. A. V. Kel'manov, S. A. Khamidullin, “A posteriori detection of a quasiperiodically repeating fragment of a numerical sequence under conditions of noise and data loss”, Sib. Zh. Ind. Mat., 6:2 (2003),  46–63  mathnet  mathscinet  zmath
2002
61. A. V. Kel'manov, S. A. Khamidullin, L. V. Okol'nishnikova, “Recognition of a quasiperiodic sequence that includes identical subsequences-fragments”, Sib. Zh. Ind. Mat., 5:4 (2002),  38–54  mathnet  mathscinet  zmath
62. A. V. Kel'manov, S. A. Khamidullin, L. V. Okol'nishnikova, “A posteriori detection of identical subsequence-fragments in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 5:2 (2002),  94–108  mathnet  mathscinet  zmath
63. A. V. Kel'manov, S. A. Khamidullin, “Recognition of a quasiperiodic sequence formed from a given number of truncated subsequences”, Sib. Zh. Ind. Mat., 5:1 (2002),  85–104  mathnet  mathscinet  zmath
2001
64. A. V. Kel'manov, S. A. Khamidullin, “Posterior detection of a given number of identical subsequences in a quasi-periodic sequence”, Zh. Vychisl. Mat. Mat. Fiz., 41:5 (2001),  807–820  mathnet  mathscinet  zmath; Comput. Math. Math. Phys., 41:5 (2001), 762–774
2000
65. A. V. Kel'manov, L. V. Okol'nishnikova, “A posteriori joint detection and distinguishing of subsequences in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 3:2 (2000),  115–139  mathnet  mathscinet  zmath
66. A. V. Kel'manov, S. A. Khamidullin, “A posteriori detection of a given number of truncated subsequences in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 3:1 (2000),  137–156  mathnet  mathscinet  zmath
67. A. V. Kel'manov, “The recognition error probability bounds for quasi-periodic sequence formed from given number of identical subsequences”, Sib. Zh. Vychisl. Mat., 3:4 (2000),  333–344  mathnet  zmath
1999
68. A. V. Kel'manov, S. A. Khamidullin, “A posteriori joint detection and distinction of a given number of subsequences in a quasiperiodic sequence”, Sib. Zh. Ind. Mat., 2:2 (1999),  106–119  mathnet  mathscinet  zmath
69. A. V. Kel'manov, S. A. Khamidullin, “Recognition of a quasiperiodic sequence formed from a given number of identical subsequences”, Sib. Zh. Ind. Mat., 2:1 (1999),  53–74  mathnet  mathscinet  zmath
70. A. V. Kel'manov, S. A. Khamidullin, “Optimal detection of given number of identical subsequences in quasiperiodic sequence”, Sib. Zh. Vychisl. Mat., 2:4 (1999),  333–349  mathnet  zmath
1998
71. A. V. Kel'manov, O. A. Kutnenko, “A lower bound for the error probability of recognizing a quasiperiodic sequence of pulses that is distorted by Gaussian uncorrelated noise”, Sib. Zh. Ind. Mat., 1:2 (1998),  113–126  mathnet  mathscinet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019