RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Matiyasevich, Yuri Vladimirovich

Statistics Math-Net.Ru
Total publications: 55
Scientific articles: 39
Presentations: 25

Number of views:
This page:9330
Abstract pages:23405
Full texts:8784
References:833
Matiyasevich, Yuri Vladimirovich
Member of the Russian Academy of Sciences
Professor
Doctor of physico-mathematical sciences (1973)
Birth date: 2.03.1947
Phone: +7 (812) 571 43 92
Fax: +7 (812) 310 53 77
E-mail:
Website: http://logic.pdmi.ras.ru/~yumat
Keywords: Diophantine equations; Hilbert's tenth problem; decision problems in algebra; graph colorings; Riemann's zeta function.
UDC: 510.53, 511.216, 511.331, 511.515, 511.53, 519.1, 51.01, 518.5, 511.5, 510.6, 511, 519.17, 519.65, 519.644.2, 510.57
MSC: 03d03, 03d25, 03d35, 03d40, 05c15, 11d72, 11m26, 11u05

Subject:

Decision problems in algebra and number theory.

Biography

Graduated from Faculty of Mathematics and Mechanics of Leningrad State University in 1969. Ph. D. thesis was defended in 1970. D. Sci. thesis was defended in 1972. Published more than 100 papers and one book.

   
Main publications:
  1. Matiyasevich Yu. V., Hilbert's Tenth Problem, Cambridge, MA, MIT Press, 1993  mathscinet  zmath

http://www.mathnet.ru/eng/person17715
http://scholar.google.com/citations?user=WnOjCtEAAAAJ&hl=en
http://zbmath.org/authors/?q=ai:matiyasevich.yuri-v
https://mathscinet.ams.org/mathscinet/MRAuthorID/194889
http://elibrary.ru/author_items.asp?authorid=2790
http://orcid.org/0000-0001-7046-3746

Publications in Math-Net.Ru
2018
1. Yu. V. Matiyasevich, “The Riemann hypothesis as the parity of special binomial coefficients”, Chebyshevskii Sb., 19:3 (2018),  46–60  mathnet  elib
2017
2. Yu. V. Matiyasevich, “A few factors from the Euler product are sufficient for calculating the zeta function with high precision”, Tr. Mat. Inst. Steklova, 299 (2017),  192–202  mathnet  elib; Proc. Steklov Inst. Math., 299 (2017), 178–188  isi  scopus
2016
3. Yu. V. Matiyasevich, “Riemann’s hypothesis in terms of the eigenvalues of special Hankel matrices”, Sovrem. Probl. Mat., 23 (2016),  87–101  mathnet  elib; Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 78–91  isi  scopus
4. Yu. Matiyasevich, “Calculation of Belyǐ functions for trees with weighted edges”, Zap. Nauchn. Sem. POMI, 446 (2016),  122–138  mathnet  mathscinet; J. Math. Sci. (N. Y.), 226:5 (2017), 623–634  scopus
2015
5. Yu. V. Matiyasevich, “Riemann's zeta function and finite Dirichlet series”, Algebra i Analiz, 27:6 (2015),  174–198  mathnet  mathscinet  elib; St. Petersburg Math. J., 27:6 (2016), 985–1002  isi  scopus
6. Yu. V. Matiyasevich, “Yet Another Representation for Reciprocals of the Nontrivial Zeros of the Riemann Zeta Function”, Mat. Zametki, 97:3 (2015),  471–474  mathnet  mathscinet  zmath  elib; Math. Notes, 97:3 (2015), 476–479  isi  scopus
2011
7. Yu. V. Matiyasevich, “What can and cannot be done with Diophantine problems”, Tr. Mat. Inst. Steklova, 275 (2011),  128–143  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 275 (2011), 118–132  isi  elib  scopus
2010
8. Yu. V. Matiyasevich, “Alternatives to the Euler–Maclaurin Formula for Calculating Infinite Sums”, Mat. Zametki, 88:4 (2010),  543–548  mathnet  mathscinet; Math. Notes, 88:4 (2010), 524–529  isi  scopus
9. Yu. Matiyasevich, “Towards finite-fold Diophantine representations”, Zap. Nauchn. Sem. POMI, 377 (2010),  78–90  mathnet; J. Math. Sci. (N. Y.), 171:6 (2010), 745–752  scopus
2003
10. Yu. V. Matiyasevich, “A Diophantine Representation of Bernoulli Numbers and Its Applications”, Tr. Mat. Inst. Steklova, 242 (2003),  98–102  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 242 (2003), 86–91
11. Yu. V. Matiyasevich, “One Probabilistic equivalent of the four color conjecture”, Teor. Veroyatnost. i Primenen., 48:2 (2003),  411–416  mathnet  mathscinet  zmath; Theory Probab. Appl., 48:2 (2004), 368–372  isi
2001
12. Yu. V. Matiyasevich, “Some algebraic methods for calculation of the number of colorings of a graph”, Zap. Nauchn. Sem. POMI, 283 (2001),  193–205  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 121:3 (2004), 2401–2408
1996
13. Yu. V. Matiyasevich, “Computation of generalized Chebyshev polynomials on a computer”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1996, 6,  59–61  mathnet  mathscinet  zmath
1995
14. Yu. V. Matiyasevich, “A new technique for obtaining Diophantine representations via elimination of bounded universal quantifiers”, Zap. Nauchn. Sem. POMI, 220 (1995),  83–92  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 87:1 (1997), 3228–3233
1990
15. Yu. V. Matiyasevich, A. N. Terekhov, B. A. Fedotov, “Standardization of microcomputer software using virtual-machine design”, Avtomat. i Telemekh., 1990, 5,  168–175  mathnet  zmath; Autom. Remote Control, 51:5 (1990), 710–716
1989
16. Yu. V. Matiyasevich, “A relationship between certain sums over trivial and nontrivial zeros of the Riemann zeta-function”, Mat. Zametki, 45:2 (1989),  65–70  mathnet  mathscinet  zmath; Math. Notes, 45:2 (1989), 131–135  isi
1988
17. Yu. V. Matijasevich, “Diophantine complexity”, Zap. Nauchn. Sem. LOMI, 174 (1988),  122–131  mathnet  mathscinet  zmath; J. Soviet Math., 55:2 (1991), 1603–1610
1984
18. Yu. V. Matiyasevich, “Studies in certain algorithmic problems of algebra and number theory”, Trudy Mat. Inst. Steklov., 168 (1984),  218–235  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 168 (1986), 227–252
19. Yu. V. Matiyasevich, “An analytic representation for the sum of values inverse to nontrivial zeros of the Riemann zeta function”, Trudy Mat. Inst. Steklov., 163 (1984),  181–182  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 163 (1985), 211–213
1977
20. Yu. V. Matiyasevich, “Primes are nonnegative values of a polynomial in 10 variables”, Zap. Nauchn. Sem. LOMI, 68 (1977),  62–82  mathnet  mathscinet  zmath; J. Soviet Math., 15:1 (1981), 33–44
21. Yu. V. Matiyasevich, “A class of primality criteria formulated in terms of the divisibility of binomial coefficients”, Zap. Nauchn. Sem. LOMI, 67 (1977),  167–183  mathnet  mathscinet  zmath; J. Soviet Math., 16:1 (1981), 874–885
1976
22. Yu. V. Matiyasevich, “A new proof of the theorem on exponential diophantine representation of enumerable sets”, Zap. Nauchn. Sem. LOMI, 60 (1976),  75–92  mathnet  mathscinet  zmath; J. Soviet Math., 14:5 (1980), 1475–1486
1975
23. Yu. V. Matiyasevich, “On metamathematical approach to proving theorems of discrete mathematics”, Zap. Nauchn. Sem. LOMI, 49 (1975),  31–50  mathnet  mathscinet  zmath
1974
24. Yu. V. Matiyasevich, “A proof scheme in discrete mathematics”, Zap. Nauchn. Sem. LOMI, 40 (1974),  94–100  mathnet  mathscinet  zmath
25. Yu. V. Matiyasevich, “The existence of non-effectivizable estimates in the theory of exponential Diophantine equations”, Zap. Nauchn. Sem. LOMI, 40 (1974),  77–93  mathnet  mathscinet  zmath
1972
26. Yu. V. Matiyasevich, “The application of the methods of the theory of logical derivation to graph theory”, Mat. Zametki, 12:6 (1972),  781–790  mathnet  mathscinet  zmath; Math. Notes, 12:6 (1972), 904–908
27. Yu. V. Matiyasevich, “Diophantine representation of enumerable predicates”, Mat. Zametki, 12:1 (1972),  115–120  mathnet  mathscinet; Math. Notes, 12:1 (1972), 501–504
28. Yu. V. Matiyasevich, “Diophantine sets”, Uspekhi Mat. Nauk, 27:5(167) (1972),  185–222  mathnet  mathscinet  zmath; Russian Math. Surveys, 27:5 (1972), 124–164
29. Yu. V. Matiyasevich, “Arithmetical representations of recursively enumerable sets with a small number of quantifiers”, Zap. Nauchn. Sem. LOMI, 32 (1972),  77–84  mathnet  mathscinet
1971
30. Yu. V. Matiyasevich, “Diophantine representation of the set of prime numbers”, Dokl. Akad. Nauk SSSR, 196:4 (1971),  770–773  mathnet  mathscinet  zmath
31. Yu. V. Matiyasevich, “Diophantine representation of enumerable predicates”, Izv. Akad. Nauk SSSR Ser. Mat., 35:1 (1971),  3–30  mathnet  mathscinet  zmath; Math. USSR-Izv., 5:1 (1971), 1–28
32. Yu. V. Matiyasevich, “On real-time recognition of the relation of occurrence”, Zap. Nauchn. Sem. LOMI, 20 (1971),  104–114  mathnet  mathscinet  zmath
33. Yu. V. Matiyasevich, “A sufficient condition for the recursive convergence of a monotone sequence”, Zap. Nauchn. Sem. LOMI, 20 (1971),  97–103  mathnet  mathscinet  zmath
1970
34. Yu. V. Matiyasevich, “The Diophantineness of enumerable sets”, Dokl. Akad. Nauk SSSR, 191:2 (1970),  279–282  mathnet  mathscinet  zmath
1968
35. Yu. V. Matiyasevich, “Arithmetical representations of powers”, Zap. Nauchn. Sem. LOMI, 8 (1968),  159–165  mathnet  mathscinet  zmath
36. Yu. V. Matiyasevich, “Two reductions of Hilbert's tenth problem”, Zap. Nauchn. Sem. LOMI, 8 (1968),  145–158  mathnet  mathscinet  zmath
37. Yu. V. Matiyasevich, “A connection between systems of words-and-lengths equations and Hilbert's tenth problem”, Zap. Nauchn. Sem. LOMI, 8 (1968),  132–144  mathnet  mathscinet  zmath
1967
38. Yu. V. Matiyasevich, “Simple examples of unsolvable associative calculi”, Dokl. Akad. Nauk SSSR, 173:6 (1967),  1264–1266  mathnet  mathscinet  zmath
39. Yu. V. Matiyasevich, “Simple examples of unsolvable canonical calculi”, Trudy Mat. Inst. Steklov., 93 (1967),  50–88  mathnet  mathscinet  zmath

2020
40. L. D. Beklemishev, A. V. Vasil'ev, E. P. Vdovin, S. S. Goncharov, V. V. Kozlov, P. S. Kolesnikov, V. D. Mazurov, Yu. V. Matiyasevich, A. S. Morozov, A. N. Parshin, V. G. Puzarenko, M. V. Schwidefsky, “Yurii Leonidovich Ershov (on his 80th birthday)”, Uspekhi Mat. Nauk, 75:3(453) (2020),  191–194  mathnet
41. S. I. Adian, V. M. Buchstaber, E. I. Zelmanov, S. V. Kislyakov, V. V. Kozlov, Yu. V. Matiyasevich, S. P. Novikov, D. O. Orlov, A. N. Parshin, V. L. Popov, D. V. Treschev, “Vladimir Petrovich Platonov (on his 80th birthday)”, Uspekhi Mat. Nauk, 75:2(452) (2020),  197–200  mathnet; Russian Math. Surveys, 75:2 (2020), 387–391
2019
42. S. I. Adian, N. N. Andreev, L. D. Beklemishev, S. S. Goncharov, Yu. L. Ershov, Yu. V. Matiyasevich, Yu. S. Osipov, M. R. Pentus, V. A. Plungyan, E. V. Rakhilina, V. A. Sadovnichii, A. L. Semenov, S. G. Tatevosov, V. M. Tikhomirov, A. Kh. Shen, “Vladimir Andreevich Uspensky (27/11/1930–27/6/2018)”, Uspekhi Mat. Nauk, 74:4(448) (2019),  165–180  mathnet  elib; Russian Math. Surveys, 74:4 (2019), 735–753  isi
2016
43. S. A. Aivazyan, V. B. Alekseev, V. A. Vatutin, M. M. Glukhov, A. A. Grusho, V. A. Emelichev, A. M. Zubkov, G. I. Ivchenko, O. M. Kasim-zade, V. A. Kashtanov, I. N. Kovalenko, V. B. Kudryavtsev, V. V. Mazalov, Yu. V. Matiyasevich, Yu. I. Medvedev, V. G. Mikhailov, Yu. L. Pavlov, B. A. Pogorelov, È. A. Primenko, L. Ya. Savel'ev, V. N. Sachkov, S. A. Stepanov, V. P. Chistyakov, V. N. Chubarikov, “Валентин Федорович Колчин (1934–2016)”, Diskr. Mat., 28:4 (2016),  3–5  mathnet  mathscinet  elib
2013
44. Yu. V. Matiyasevich, “Алан Тьюринг и теория чисел”, Mat. Pros., Ser. 3, 17 (2013),  6–34  mathnet
45. M. A. Vsemirnov, È. A. Hirsch, D. Yu. Grigor'ev, G. V. Davydov, E. Ya. Dantsin, I. D. Zaslavskii, È. F. Karavaev, B. Yu. Konev, N. K. Kossovskii, V. A. Lifschitz, M. Margenstern, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, R. Pliuškevičius, A. O. Slisenko, S. V. Solov'ev, V. P. Chernov, “Nikolai Aleksandrovich Shanin (obituary)”, Uspekhi Mat. Nauk, 68:4(412) (2013),  173–176  mathnet  mathscinet  elib; Russian Math. Surveys, 68:4 (2013), 763–767  isi  elib  scopus
46. D. A. Archangelsky, B. S. Baizhanov, O. V. Belegradek, V. Ya. Belyaev, L. A. Bokut, M. K. Valiev, S. K. Vodopyanov, M. Gitik, Yu. S. Gurevich, D. O. Daderkin, A. M. Dekhtyar, M. I. Dekhtyar, A. Ya. Dikovsky, S. M. Dudakov, E. I. Zelmanov, B. I. Zilber, S. L. Krushkal, S. S. Kutateladze, Yu. V. Matiyasevich, G. E. Mints, I. Kh. Musikaev, A. K. Rebrov, Yu. G. Reshetnyak, A. L. Semenov, A. P. Stolboushkin, I. A. Taimanov, B. A. Trakhtenbrot, “Mikhail Abramovich Taitslin (1936–2013)”, Sib. Èlektron. Mat. Izv., 10 (2013),  54–65  mathnet
2012
47. Juhani Karhumäki, Yuri Matiyasevich, “Preface”, Zap. Nauchn. Sem. POMI, 402 (2012),  5–8  mathnet
2010
48. D. R. Heath-Brown, A. MacIntyre, Yu. I. Manin, Yu. V. Matiyasevich, B. Z. Moroz, “Preface”, Zap. Nauchn. Sem. POMI, 377 (2010),  5  mathnet; J. Math. Sci. (N. Y.), 171:6 (2010), 703  scopus
2003
49. Yu. V. Matiyasevich, “Preface”, Zap. Nauchn. Sem. POMI, 304 (2003),  5–6  mathnet
2001
50. M. A. Vsemirnov, E. A. Hirsch, D. Yu. Grigor'ev, G. V. Davydov, E. Ya. Dantsin, A. A. Ivanov, B. Yu. Konev, V. A. Lifshits, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko, “Nikolai Aleksandrovich Shanin (on his 80th birthday)”, Uspekhi Mat. Nauk, 56:3(339) (2001),  181–184  mathnet  mathscinet  zmath; Russian Math. Surveys, 56:3 (2001), 601–605  isi
1991
51. Yu. V. Matiyasevich, “R. Penrose. “The emperor's new mind”. Oxford University Press, Oxford etc., 1989, xiii+466 pp.”, Algebra i Analiz, 3:5 (1991),  254–265  mathnet
1990
52. Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko, “Nikolai Aleksandrovich Shanin (on his seventieth birthday)”, Uspekhi Mat. Nauk, 45:1(271) (1990),  205–206  mathnet  mathscinet  zmath; Russian Math. Surveys, 45:1 (1990), 239–240  isi
1984
53. G. V. Davydov, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko, A. V. Sochilina, N. A. Shanin, “Sergei Yur'evich Maslov (obituary)”, Uspekhi Mat. Nauk, 39:2(236) (1984),  129–130  mathnet  mathscinet; Russian Math. Surveys, 39:2 (1984), 133–135  isi
1980
54. S. Yu. Maslov, Yu. V. Matiyasevich, G. E. Mints, V. P. Orevkov, A. O. Slisenko, “Nikolai Aleksandrovich Shanin (on his sixtieth birthday)”, Uspekhi Mat. Nauk, 35:2(212) (1980),  241–245  mathnet  mathscinet  zmath; Russian Math. Surveys, 35:2 (1980), 277–282  isi
1971
55. Yu. V. Matiyasevich, A. O. Slisenko, “Editors' preface”, Zap. Nauchn. Sem. LOMI, 20 (1971),  7  mathnet

Presentations in Math-Net.Ru
1. Джулия Робинсон и 10-я проблема Гильберта (к столетию со дня рождения и пятидесятилетию со дня решения проблемы)
Yu. V. Matiyasevich
Meetings of the St. Petersburg Mathematical Society
February 25, 2020 18:00   
2. $\Pi^0_1$-формулировки некоторых известных проблем
Yu. V. Matiyasevich
Traditional winter session MIAN–POMI devoted to the topic "Mathematical logic"
December 24, 2018 12:00   
3. Computational aspect of Hamburger’s theorem
Yu. V. Matiyasevich
XV International Conference «Algebra, Number Theory and Discrete Geometry: modern problems and applications», dedicated to the centenary of the birth of the Doctor of Physical and Mathematical Sciences, Professor of the Moscow State University Korobov Nikolai Mikhailovich
May 28, 2018 12:20
4. Approximation of the zeta function via finite Euler products
Yu. V. Matiyasevich
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 24, 2017 12:40   
5. Calculation of Riemann's zeta function via interpolating determinants
Yu. V. Matiyasevich
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
April 1, 2013 13:00   
6. Some non-standard methods to perform calculations with Riemann's Zeta function
Yu. V. Matiyasevich
Globus Seminar
November 22, 2012 15:40   
7. Alan Turing and number theory (to the centenary of Alan Turing's birth)
Yu. V. Matiyasevich
Meetings of the St. Petersburg Mathematical Society
October 9, 2012 18:00   
8. Alan Turing and Number Theory
Yu. V. Matiyasevich
June 23, 2012 11:30
9. A method of computing the zeros of the Riemann zeta-function
Yu. V. Matiyasevich
Internet video conference "Day of Mathematics and Mechanics"
September 19, 2011 12:30
10. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 5
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 28, 2011 11:15   
11. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 4
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 27, 2011 17:00   
12. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 3
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 25, 2011 17:00   
13. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 2
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 24, 2011 17:00   
14. Hilbert's tenth problem: what can and can not do with Diophantine equations. Lecture 1
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2011
July 22, 2011 12:45   
15. What can we do with Diophantine problems and what we cannot do
Yuri Matiyasevich
International conference "GEOMETRY, TOPOLOGY, ALGEBRA and NUMBER THEORY, APPLICATIONS" dedicated to the 120th anniversary of Boris Delone (1890–1980)
August 20, 2010 11:10   
16. Mathematical proof: yesterday, today, tomorrow
Yu. V. Matiyasevich
Meetings of the St. Petersburg Mathematical Society
March 23, 2010
17. Hilbert's tenth problem and the models of computational processes
Yu. V. Matiyasevich
Traditional Christmas session MIAN-POMI, 2009 "Logic and Theoretical Computer Science"
December 16, 2009 16:05   
18. Hidden life of Riemann's zeta function
Yu. V. Matiyasevich
Steklov Mathematical Institute Seminar
December 18, 2008 16:00   
19. Hilbert's tenth problem III
Yu. V. Matiyasevich
June 6, 2008 10:00
20. Hilbert's tenth problem II
Yu. V. Matiyasevich
June 5, 2008 10:00
21. Hilbert's tenth problem I
Yu. V. Matiyasevich
June 3, 2008 14:30
22. Hidden life of Riemann's zeta function
Yu. V. Matiyasevich
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
October 8, 2007
23. Алгебра – это геометрия для лентяев. Лекция 2
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2004
July 25, 2004 15:30   
24. Алгебра – это геометрия для лентяев. Лекция 1
Yu. V. Matiyasevich
Summer School "Contemporary Mathematics", 2004
July 24, 2004 15:30   
25. Tenth Hilbert problem: what one can and can not do with Diophantine equations
Yu. V. Matiyasevich
Meetings of the St. Petersburg Mathematical Society
September 19, 2003

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020