RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Badaev, Serikzhan Agybaevich

Statistics Math-Net.Ru
Total publications: 9
Scientific articles: 9

Number of views:
This page:941
Abstract pages:1901
Full texts:659
References:211
Professor
Doctor of physico-mathematical sciences (1996)
Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
Birth date: 09.11.1948
E-mail: , ,
Keywords: computability; arithmetical numberings; Rogers semilattices; precomplete numberings; minimal numberings; admissible sets; cellular automata.

Subject:

It was found an useful criterion of minimal numberings which allowed to establish new methods of building computable minimal numberings and caused a natural classification of computable minimal numberings. Jointly with S. Goncharov, it was constructed an infinite family of c.e. sets such that the family contains the least set under inclusion and has one-element Rogers semilattice. Jointly with S. Goncharov and A. Sorbi, the properties of completions of arithmetical numberings were investigated as well as interconnections of complete and universal numberings were examined.

Biography

Graduated from Department of Mathematics Novosibirsk State University in 1971 (chair for algebra and mathematical logic). Ph. D. thesis was defended in 1978. D. Sci. thesis was defended in 1996. A list of my papers contains more than 60 titles. Jointly with prof. V. P. Dobritsa, I am leeding the Almaty research seminar on mathematical logic since 1982.

Team leader of the projects: INTAS-RFBR-97-139 "Computability and Models" and INTAS-00-499 "Computability in Hierarchies and Topological Spaces".

   
Main publications:
  • Badaev S. A., Goncharov S. S., Sorbi A. Completeness and universality of arithmetical numberings // Computability and Models. Dortrecht: Kluwer Acad. Publ. Group, 2002.
  • Badaev S. A., Goncharov S. S. Theory of numberings: Open Problems // Contemp. Math., 2000, 257, 23–38.
  • Badaev S. A. On minimal enumerations // Siberian Adv. Math., 1992, 2(1), 1–30.

http://www.mathnet.ru/eng/person17726
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/315802

Publications in Math-Net.Ru
2018
1. S. A. Badaev, A. A. Issakhov, “Some absolute properties of $A$-computable numberings”, Algebra Logika, 57:4 (2018),  426–447  mathnet; Algebra and Logic, 57:4 (2018), 275–288  isi  scopus
2014
2. S. A. Badaev, S. S. Goncharov, “Generalized computable universal numberings”, Algebra Logika, 53:5 (2014),  555–569  mathnet  mathscinet; Algebra and Logic, 53:5 (2014), 355–364  isi  scopus
3. K. Sh. Abeshev, S. A. Badaev, M. Mustafa, “Families without minimal numberings”, Algebra Logika, 53:4 (2014),  427–450  mathnet  mathscinet; Algebra and Logic, 53:4 (2014), 271–286  isi  scopus
2008
4. S. A. Badaev, S. S. Goncharov, A. Sorbi, “Some remarks on completion of numberings”, Sibirsk. Mat. Zh., 49:5 (2008),  986–991  mathnet  mathscinet; Siberian Math. J., 49:5 (2008), 780–783  isi  scopus
2006
5. S. A. Badaev, S. S. Goncharov, A. Sorbi, “Isomorphism types of Rogers semilattices for families from different levels of the arithmetical hierarchy”, Algebra Logika, 45:6 (2006),  637–654  mathnet  mathscinet  zmath; Algebra and Logic, 45:6 (2006), 361–370  scopus
2005
6. S. A. Badaev, S. S. Goncharov, A. Sorbi, “Elementary Theories for Rogers Semilattices”, Algebra Logika, 44:3 (2005),  261–268  mathnet  mathscinet  zmath; Algebra and Logic, 44:3 (2006), 143–147  scopus
2002
7. S. A. Badaev, S. Yu. Podzorov, “Minimal coverings in the Rogers semilattices of $\Sigma_n^0$-computable numberings”, Sibirsk. Mat. Zh., 43:4 (2002),  769–778  mathnet  mathscinet  zmath; Siberian Math. J., 43:4 (2002), 616–622  isi
2001
8. S. A. Badaev, S. S. Goncharov, “Rogers Semilattices of Families of Arithmetic Sets”, Algebra Logika, 40:5 (2001),  507–522  mathnet  mathscinet  zmath; Algebra and Logic, 40:5 (2001), 283–291  scopus
1993
9. S. A. Badaev, “On cardinality of semilattices of enumerations of nondiscrete families”, Sibirsk. Mat. Zh., 34:5 (1993),  3–10  mathnet  mathscinet  zmath; Siberian Math. J., 34:5 (1993), 795–800  isi

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020