RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Voronin, Anatolii Fedorovich

Statistics Math-Net.Ru
Total publications: 25
Scientific articles: 25

Number of views:
This page:1009
Abstract pages:3549
Full texts:1098
References:552
Candidate of physico-mathematical sciences (1989)
Speciality: 01.01.07 (Computing mathematics)
Birth date: 3.12.1954
E-mail:
Keywords: convolution equation; singular integral equations; Riemann problem; Carleman formulas; inverse and ill-posed problems.
   
Main publications:
  • Voronin A. F. Inverse problems for multivelocity transfer equation in the plane–symmetric case // J. Inv. Ill-Posed Problems, 2000, vol. 8, № 4, p. 459–468.

http://www.mathnet.ru/eng/person17729
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/222775

Publications in Math-Net.Ru
2018
1. A. F. Voronin, “A generalized Riemann boundary value problem and integral convolutions equations of the first and second kinds on a finite interval”, Sib. Èlektron. Mat. Izv., 15 (2018),  1651–1662  mathnet
2. A. F. Voronin, “On the connection between the generalized Riemann boundary value problem and the truncated Wiener–Hopf equation”, Sib. Èlektron. Mat. Izv., 15 (2018),  412–421  mathnet
2017
3. A. F. Voronin, “The inverse and direct problem for equation of the first kind of convolution on the half-line”, Sib. Èlektron. Mat. Izv., 14 (2017),  1456–1462  mathnet
4. A. F. Voronin, “Conditions for the stability and uniqueness of the solution of the Markushevich problem”, Sib. Èlektron. Mat. Izv., 14 (2017),  511–517  mathnet
2014
5. A. F. Voronin, “Reconstruction of the convolution operator from the right-hand side on the real half-axis”, Sib. Zh. Ind. Mat., 17:2 (2014),  32–40  mathnet  mathscinet; J. Appl. Industr. Math., 8:3 (2014), 428–435
2012
6. A. F. Voronin, “Recovery solutions of the Volterra equation of the first kind of convolution on the half with incomplete data”, Sib. Èlektron. Mat. Izv., 9 (2012),  464–471  mathnet
7. A. F. Voronin, “Systems of convolution equations of the first and second kind on a finite interval and factorization of matrix-functions”, Sibirsk. Mat. Zh., 53:5 (2012),  978–990  mathnet  mathscinet; Siberian Math. J., 53:5 (2012), 781–791  isi  scopus
2011
8. A. F. Voronin, “A method for determining the partial indices of symmetric matrix functions”, Sibirsk. Mat. Zh., 52:1 (2011),  54–69  mathnet  mathscinet; Siberian Math. J., 52:1 (2011), 41–53  isi  scopus
2010
9. A. F. Voronin, A. E. Kovtanyuk, M. M. Lavrent'ev, “The Riemann boundary value problem in research of well-posednes of linear and nonlinear mathematical physics problems”, Sib. Èlektron. Mat. Izv., 7 (2010),  112–122  mathnet
10. A. F. Voronin, “Partial indices of unitary and Hermitian matrix functions”, Sibirsk. Mat. Zh., 51:5 (2010),  1010–1016  mathnet  mathscinet  elib; Siberian Math. J., 51:5 (2010), 805–809  isi  scopus
2009
11. A. F. Voronin, “Исследование интегрального уравнения второго рода в свертках на конечном интервале с периодическим ядром”, Sib. Zh. Ind. Mat., 12:1 (2009),  31–39  mathnet  mathscinet; J. Appl. Industr. Math., 4:2 (2010), 282–289
2008
12. A. F. Voronin, “The well-posednes of a convolution equations on a finite interval and of a system of Cauchy-type singular integral equations”, Sib. Èlektron. Mat. Izv., 5 (2008),  456–464  mathnet  mathscinet
13. A. F. Voronin, “Интегральное уравнения первого рода в свертках на конечном интервале с периодическим ядром”, Sib. Zh. Ind. Mat., 11:1 (2008),  46–56  mathnet  mathscinet; J. Appl. Industr. Math., 3:3 (2009), 409–418
14. A. F. Voronin, “Necessary and sufficient well-posedness conditions for a convolution equation of the second kind with even kernel on a finite interval”, Sibirsk. Mat. Zh., 49:4 (2008),  756–767  mathnet  mathscinet  zmath; Siberian Math. J., 49:4 (2008), 601–611  isi  scopus
2004
15. A. F. Voronin, “A complete generalization of the Wiener–Hopf method to convolution integral equations with integrable kernel on a finite interval”, Differ. Uravn., 40:9 (2004),  1190–1197  mathnet  mathscinet; Differ. Equ., 40:9 (2004), 1259–1267
2003
16. A. F. Voronin, “The Titchmarsh Theorem on Supports of Convolutions Generalized to Multidimensional Systems of Volterra Convolution Equations of the First Kind”, Differ. Uravn., 39:3 (2003),  416–417  mathnet  mathscinet; Differ. Equ., 39:3 (2003), 451–452
2002
17. A. F. Voronin, “Volterra convolution equation of first kind on segment”, Fundam. Prikl. Mat., 8:4 (2002),  955–966  mathnet  mathscinet  zmath  elib
18. A. F. Voronin, “An analogue of Picard's theorem for a convolution equation of the first kind with a smooth kernel”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, 7,  3–7  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 46:7 (2002), 1–5
19. A. F. Voronin, “On the well-posedness of a boundary value problem on a line for three analytic functions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2002, 4,  18–23  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 46:4 (2002), 16–21
2001
20. A. F. Voronin, “A Uniqueness Theorem for a Convolution Integral Equation of the First Kind with Differentiable Kernel on an Interval”, Differ. Uravn., 37:10 (2001),  1342–1349  mathnet  mathscinet; Differ. Equ., 37:10 (2001), 1412–1419
21. A. F. Voronin, “A System of Volterra Convolution Equations of the First Kind on a Finite Interval”, Differ. Uravn., 37:9 (2001),  1258–1264  mathnet  mathscinet; Differ. Equ., 37:9 (2001), 1324–1330
22. A. F. Voronin, “The Riemann boundary value problem for a half-plane with a coefficient that exponentially decreases at infinity”, Izv. Vyssh. Uchebn. Zaved. Mat., 2001, 9,  20–23  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 45:9 (2001), 17–20
2000
23. A. F. Voronin, “A class of second-order convolution equations on an interval”, Differ. Uravn., 36:10 (2000),  1377–1384  mathnet  mathscinet; Differ. Equ., 36:10 (2000), 1521–1528
24. A. F. Voronin, “Convolution equations on the half-line with symbols degenerating on an interval”, Differ. Uravn., 36:4 (2000),  555–557  mathnet  mathscinet; Differ. Equ., 36:4 (2000), 620–624
1985
25. A. F. Voronin, A. I. Khisamutdinov, “The Monte Carlo method with additional random sampling for calculating the flow of particles “at a point””, Zh. Vychisl. Mat. Mat. Fiz., 25:8 (1985),  1155–1163  mathnet  mathscinet; U.S.S.R. Comput. Math. Math. Phys., 25:4 (1985), 121–126

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019