RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Shapiro, Michael Zalmanovich

Statistics Math-Net.Ru
Total publications: 8
Scientific articles: 8
Presentations: 7

Number of views:
This page:1520
Abstract pages:1641
Full texts:323
References:325
Candidate of physico-mathematical sciences (1992)
Birth date: 24.05.1963
E-mail: ,
Website: http://www.math.msu.edu/~mshapiro
Keywords: moduli spaces, Schubert calculus.
   
Main publications:
  • T. Ekedahl, S. Lando, M. Shapiro, A. Vainshtein. On Hodge integrals and Hurwitz numbers // Invent. math., 2001, vol. 146, 2, 297–327 (or math.AG/0004096).
  • B. Shapiro, M. Shapiro, A. Vainshtein, and A. Zelevinsky. Simply–laced Coxeter groups and groups generated by symplectic transvections // Michigan Math. Journal, special volume in honor of William Fulton, 2000, {48}, 531–551.
  • A. Postnikov, B. Shapiro and M. Shapiro. Algebras of curvature forms on homogeneous manifolds // Differential topology, infinite–dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2, 1999, {194}, Amer. Math. Soc., Providence, RI, 227–235.
  • M. I. Gekhtman and M. Z. Shapiro. Non–commutative and commutative integrability of generic Toda flows in simple Lie algebras // Comm. Pure and Appl. Math. 1999,{vol. LII}, 53–84.
  • B. B. Z.Shapiro and M. Z. Shapiro. On ring generated by Chern curvature forms on SL_n // C. R. Acad. Sci. Paris Ser. I Math. 1998, {326}, 75–80.

http://www.mathnet.ru/eng/person17770
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:shapiro.michael-z
https://mathscinet.ams.org/mathscinet/MRAuthorID/249594

Publications in Math-Net.Ru
2014
1. L. Chekhov, M. Shapiro, “Teichmüller spaces of Riemann surfaces with orbifold points of arbitrary order and cluster variables”, Int. Math. Res. Not. IMRN, 2014:10 (2014),  2746–2772  mathnet  mathscinet  zmath  isi  scopus
2012
2. M. Gekhtman, M. Shapiro, A. Vainshtein, “Cluster structures on simple complex Lie groups and Belavin–Drinfeld classification”, Mosc. Math. J., 12:2 (2012),  293–312  mathnet  mathscinet  zmath  isi
2009
3. B. Shapiro, M. Shapiro, “On Eigenvalues of Rectangular Matrices”, Tr. Mat. Inst. Steklova, 267 (2009),  258–265  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 267 (2009), 248–255  isi  scopus
2006
4. T. Ekedahl, B. Z. Shapiro, M. Z. Shapiro, “First steps towards total reality of meromorphic functions”, Mosc. Math. J., 6:1 (2006),  95–106  mathnet  mathscinet  zmath  isi
2004
5. M. Shapiro, V. Vinnikov, P. Yuditskii, “Finite difference operators with a finite band spectrum”, Mat. Fiz. Anal. Geom., 11:3 (2004),  331–340  mathnet  mathscinet  zmath
2003
6. M. Gekhtman, M. Z. Shapiro, A. D. Vainshtein, “Cluster algebras and Poisson geometry”, Mosc. Math. J., 3:3 (2003),  899–934  mathnet  mathscinet  zmath  isi
1994
7. M. Z. Shapiro, “A Generalization of the Kuiper–Massey Theorem”, Funktsional. Anal. i Prilozhen., 28:2 (1994),  90–91  mathnet  mathscinet  zmath; Funct. Anal. Appl., 28:2 (1994), 146–147  isi
1993
8. M. Z. Shapiro, “Topology of the space of nondegenerate curves”, Izv. RAN. Ser. Mat., 57:5 (1993),  106–126  mathnet  mathscinet  zmath; Russian Acad. Sci. Izv. Math., 43:2 (1994), 291–310  isi
1992
9. M. Z. Shapiro, “Topology of the space of nondegenerate curves”, Funktsional. Anal. i Prilozhen., 26:3 (1992),  93–96  mathnet  mathscinet  zmath; Funct. Anal. Appl., 26:3 (1992), 227–229  isi

Presentations in Math-Net.Ru
1. Обобщенные кластерные алгебры и их примеры
M. Z. Shapiro
Seminar of the Department of Algebra and of the Department of Algebraic Geometry (Shafarevich Seminar)
November 10, 2015 15:00
2. Cluster structures on Poisson-Lie groups
M. Z. Shapiro
Fourth international workshop "Combinatorics of Moduli Spaces, Cluster Algebras and Topological Recursion"
May 28, 2014 10:00   
3. Integrability of generalized pentagram maps and cluster algebra (Lecture 2)
M. Z. Shapiro
Algebraic Structures in Integrable Systems
December 6, 2012 10:00   
4. Integrability of generalized pentagram maps and cluster algebra (Lecture 1)
M. Z. Shapiro
Algebraic Structures in Integrable Systems
December 4, 2012 11:30   
5. Cluster algebras and integrable systems. Lecture 3
M. Z. Shapiro
Summer School on Geometry and Mathematical Physics 2012
June 29, 2012 11:20   
6. Cluster algebras and integrable systems. Lecture 2
M. Z. Shapiro
Summer School on Geometry and Mathematical Physics 2012
June 28, 2012 11:20   
7. Cluster algebras and integrable systems. Lecture 1
M. Z. Shapiro
Summer School on Geometry and Mathematical Physics 2012
June 27, 2012 16:10   

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020