Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Kamenev, Georgij Kirillovich
(1960–2020)

Total publications: 33 (33)
in MathSciNet: 30 (30)
in zbMATH: 29 (29)
in Web of Science: 17 (17)
in Scopus: 17 (17)
Cited articles: 31
Citations in Math-Net.Ru: 256
Citations in Web of Science: 79
Citations in Scopus: 105
Presentations: 1

Number of views:
This page:1051
Abstract pages:8348
Full texts:2753
References:1006
Senior Researcher
Doctor of physico-mathematical sciences (2005)
Birth date: 16.03.1960
Website: http://www.ccas.ru/kamenev
Keywords: approximation of convex sets; approximation of mappings; convex polyhedra; approximation algorithms; computational geometry; multiplecriteria decision making; decision support systems; mathematical modelling.
   
Main publications:
  • Lotov A. V., Bushenkov V. A., Kamenev G. K. Interactive decision maps. Approximation and visualization of Pareto frontier. Boston: Kluwer Acad. Publ., 2004.

http://www.mathnet.ru/eng/person17814
http://ru.wikipedia.org/wiki/
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/308835

Full list of publications:
| scientific publications | by years | by types | by times cited in WoS | by times cited in Scopus | common list |



   2020
1. G. K. Kamenev, I. G. Kamenev, “Discrete-dynamic modeling of governance for human capital”, Matem. Mod., 32:6 (2020), 81–96  mathnet  crossref  mathscinet
2. G. K. Kamenev, I. G. Kamenev, “Multicriterial metric data analysis in human capital modelling”, Kompyuternye issledovaniya i modelirovanie, 12:5 (2020), 1223–1245  mathnet  crossref  scopus;

   2018
3. G. K. Kamenev, “Method for constructing optimal dark coverings”, Comput. Math. Math. Phys., 58:7 (2018), 1040–1048  mathnet  crossref  crossref  mathscinet  zmath  isi  elib  scopus
4. G. K. Kamenev, “Multicriteria method for identification and forecasting”, Math. Models Comput. Simul., 10:2 (2018), 154–163  mathnet  crossref  mathscinet  zmath  elib  scopus (cited: 3)

   2016
5. G. K. Kamenev, “Multicriteria identification sets method”, Comput. Math. Math. Phys., 56:11 (2016), 1843–1858  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 1)  elib  elib  scopus (cited: 4)
6. G. K. Kamenev, “Efficiency of the estimate refinement method for polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 56:5 (2016), 744–755  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 3)  elib  elib  scopus (cited: 4)

   2015
7. G. K. Kamenev, “Asymptotic properties of the estimate refinement method in polyhedral approximation of multidimensional balls”, Comput. Math. Math. Phys., 55:10 (2015), 1619–1632  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 2)  elib  elib  scopus (cited: 2)
8. G. K. Kamenev, N. N. Olenev, “Study of identification and forecast stability for Russian economic”, Math. Models Comput. Simul., 7:2 (2015), 179–189  mathnet  crossref  mathscinet  zmath  elib  elib  scopus (cited: 4)

   2014
9. G. K. Kamenev, “Method for polyhedral approximation of a ball with an optimal order of growth of the facet structure cardinality”, Comput. Math. Math. Phys., 54:8 (2014), 1201–1213  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 6)  elib  elib  scopus (cited: 9)

   2013
10. G. K. Kamenev, “Study of convergence rate and efficiency of two-phase methods for approximating the Edgeworth–Pareto hull”, Comput. Math. Math. Phys., 53:4 (2013), 375–385  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 8)  elib  elib  scopus (cited: 8)
11. G. K. Kamenev, A. V. Lotov, T. S. Mayskaya, “Iterative method for constructing coverings of the multidimensional unit sphere”, Comput. Math. Math. Phys., 53:2 (2013), 131–143  mathnet  crossref  crossref  mathscinet  zmath  isi (cited: 8)  elib  elib  scopus (cited: 9)

   2012
12. V. E. Berezkin, G. K. Kamenev, “Convergence analysis of two-phase methods for approximating the Edgeworth–Pareto hull in nonlinear multicriteria optimization problems”, Comput. Math. Math. Phys., 52:6 (2012), 846–854  mathnet  crossref  mathscinet  zmath  adsnasa  isi (cited: 7)  elib  elib  scopus (cited: 7)
13. G. K. Kamenev, A. I. Pospelov, “Polyhedral approximation of convex compact bodies by filling methods”, Comput. Math. Math. Phys., 52:5 (2012), 680–690  mathnet  crossref  mathscinet  zmath  isi (cited: 3)  elib  elib  scopus (cited: 3)

   2011
14. R. V. Efremov, G. K. Kamenev, “Optimal growth order of the number of vertices and facets in the class of Hausdorff methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 51:6 (2011), 952–964  mathnet  crossref  mathscinet  zmath  isi (cited: 7)  elib  elib  scopus (cited: 7)

   2010
15. G. K. Kamenev, “On one approach to the uncertainty investigation arising in model identification”, Matem. Mod., 22:9 (2010), 116–128  mathnet  zmath  elib

   2009
16. G. K. Kamenev, “Study of an adaptive single-phase method for approximating the multidimensional Pareto frontier in nonlinear systems”, Comput. Math. Math. Phys., 49:12 (2009), 2006–2016  mathnet  crossref  mathscinet  isi (cited: 3)  elib  elib  scopus (cited: 5)

   2008
17. G. K. Kamenev, “The initial convergence rate of adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:5 (2008), 724–738  mathnet  crossref  mathscinet  zmath  isi (cited: 7)  elib  elib  scopus (cited: 6)
18. G. K. Kamenev, “Duality theory of optimal adaptive methods for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 48:3 (2008), 376–394  mathnet  crossref  mathscinet  zmath  isi (cited: 1)  elib  elib  scopus (cited: 1)

   2006
19. V. E. Berezkin, G. K. Kamenev, A. V. Lotov, “Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier”, Comput. Math. Math. Phys., 46:11 (2006), 1918–1931  mathnet  crossref  mathscinet  elib  scopus (cited: 33)

   2005
20. N. B. Brusnikina, G. K. Kamenev, “On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary”, Comput. Math. Math. Phys., 45:9 (2005), 1500–1510  mathnet  mathscinet  zmath  elib  elib

   2003
21. G. K. Kamenev, “Self-dual adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 43:8 (2003), 1073–1086  mathnet  mathscinet  zmath

   2002
22. G. K. Kamenev, “Conjugate adaptive algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:9 (2002), 1301–1316  mathnet  mathscinet  zmath
23. R. V. Efremov, G. K. Kamenev, “A priori estimate for asymptotic efficiency of one class of algorithms for polyhedral approximation of convex bodies”, Comput. Math. Math. Phys., 42:1 (2002), 20–29  mathnet  mathscinet  zmath

   2001
24. G. K. Kamenev, “Approximation of completely bounded sets by the deep holes method”, Comput. Math. Math. Phys., 41:11 (2001), 1667–1675  mathnet  mathscinet  zmath  elib

   2000
25. G. K. Kamenev, “On the approximation properties of nonsmooth convex disks”, Comput. Math. Math. Phys., 40:10 (2000), 1404–1414  mathnet  mathscinet  zmath  elib

   1999
26. G. K. Kamenev, “Efficient algorithms for approximation of nonsmooth convex bodies”, Comput. Math. Math. Phys., 39:3 (1999), 423–427  mathnet  mathscinet  zmath

   1996
27. G. K. Kamenev, “An algorithm for approximating polyhedra”, Zh. Vychisl. Mat. Mat. Fiz., 36:4 (1996), 134–147  mathnet  mathscinet  zmath

   1994
28. G. K. Kamenev, “Analysis of an algorithm for approximating convex bodies”, Comput. Math. Math. Phys., 34:4 (1994), 521–528  mathnet  mathscinet  zmath  isi (cited: 8)
29. V. A. Bushenkov, D. V. Gusev, G. K. Kamenev, A. V. Lotov, O. L. Chernykh, “Visualization of the Pareto set in the choice multidimensional problem”, Dokl. Akad. Nauk, 335:5 (1994), 567–569  mathnet  zmath

   1993
30. G. K. Kamenev, “The efficiency of Hausdorff algorithms for approximating convex bodies by polytopes”, Comput. Math. Math. Phys., 33:5 (1993), 709–716  mathnet  mathscinet  zmath  isi (cited: 1)

   1992
31. G. K. Kamenev, D. L. Kondratiev, “On the method of nonclosed nonlinear models analysis”, Matem. Mod., 4:3 (1992), 105–118  mathnet  mathscinet  zmath
32. S. M. Dzholdybaeva, G. K. Kamenev, “Numerical analysis of the efficiency of an algorithm for approximating convex bodies by polyhedra”, Comput. Math. Math. Phys., 32:6 (1992), 739–746  mathnet  mathscinet  zmath  isi (cited: 2)
33. G. K. Kamenev, “A class of adaptive algorithms for approximating convex bodies by polyhedra”, Comput. Math. Math. Phys., 32:1 (1992), 114–127  mathnet  mathscinet  zmath  isi (cited: 12)

Presentations in Math-Net.Ru
1. Оптимальные методы полиэдральной аппроксимации выпуклых тел
G. K. Kamenev
Mathematical Seminar
November 30, 2013

Organisations
 
Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022