01.01.06 (Mathematical logic, algebra, and number theory)
Birth date:
17.03.1971
E-mail:
Main publications:
V. N. Chugunov, Normalnye i perestanovochnye teplitsevy i gankelevy matritsy, Nauka, Moskva, 2017 , 272 pp.
Kh. D. Ikramov, V. N. Chugunov, “Description of pairs of anti-commuting Toeplitz and Hankel matrices”, J. Math. Sci. (N. Y.), 232:6 (2018), 848–891
V. N. Chugunov, Kh. D. Ikramov, “A complete solution of the permutability problem for Toeplitz and Hankel matrices”, Linear Algebra and Its Applications, 478 (2015), 53–80
V. N. Chugunov, Kh. D. Ikramov, “A contribution to the normal Hankel problem”, Linear Algebra and Its Applications, 430 (2009), 2094–2101
Kh. D. Ikramov, V. N. Chugunov, “A criterion for the normality of a complex Toeplitz matrix”, Comput. Math. Math. Phys., 36:2 (1996), 131–137
V. N. Chugunov, “O nekotorykh mnozhestvakh par $\sigma$-kommutiruyuschikh ($\sigma\ne 0, \pm 1$) teplitsevoi i gankelevoi matrits”, Chislennye metody i voprosy organizatsii vychislenii. XXXII, Zap. nauchn. sem. POMI, 482, POMI, SPb, 2019, 288-294 (to appear)
2.
V. N. Chugunov, “On some sets of $\sigma$-commuting ($\sigma\ne 0, \pm 1$) Toeplitz and Hankel matrices”, Computational methods and algorithms. Part XXXII, Zap. Nauchn. Sem. POMI, 482, POMI, St. Petersburg, 2019, 288–294
2018
3.
V. N. Chugunov, “On some sets of anticommuting Toeplitz matrices”, Computational methods and algorithms. Part XXXI, Zap. Nauchn. Sem. POMI, 472, POMI, St. Petersburg, 2018, 204–210
2017
4.
V. N. Chugunov, Kh. D. Ikramov, “A description of pairs of the quasi-commuting Toeplitz and Hankel matrices”, Num. Anal. Appl., 10:4 (2017), 358–361
5.
V. N. Chugunov, Kh. D. Ikramov, “O klassifikatsii par antiperestanovochnykh teplitsevoi i gankelevoi matrits”, Doklady Akademii nauk, 20:4 (2017), 439–444
2018
6.
Kh. D. Ikramov, V. N. Chugunov, “Description of pairs of anti-commuting Toeplitz and Hankel matrices”, J. Math. Sci. (N. Y.), 232:6 (2018), 848–891 (cited: 1)
2017
7.
V. N. Chugunov, Normalnye i perestanovochnye teplitsevy i gankelevy matritsy, Nauka, Moskva, 2017 , 272 pp.
2016
8.
A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “A Duality Relation for Unitary Automorphisms in the Spaces of Toeplitz and Hankel Matrices”, Math. Notes, 99:1 (2016), 3–8
9.
Kh. D. Ikramov, V. N. Chugunov, “On conditions for permutability of Toeplitz and Hankel matrices”, Comput. Math. Math. Phys., 56:3 (2016), 354–357 (cited: 1) (cited: 1)
10.
V. N. Chugunov, Kh. D. Ikramov, “Classification of real pairs of commuting Toeplitz and Hankel matrices”, Num. Anal. Appl., 9:4 (2016), 359–368 (cited: 1) (cited: 1)
2017
11.
V. N. Chugunov, “On a description of pairs of anti-commuting Hankel matrices”, J. Math. Sci. (N. Y.), 224:6 (2017), 971–981
2015
12.
A. K. Abdikalykov, V. N. Chugunov, Kh. D. Ikramov, “Unitary congruence automorphisms of the space of Toeplitz matrices”, Linear Multilinear Algebra, 63:6 (2015), 1195–1203 (cited: 2) (cited: 2) (cited: 3)
13.
V. N. Chugunov, “Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of both Summands are Skew-Circulant Matrices”, Math. Notes, 98:2 (2015), 289–300
14.
Kh. D. Ikramov, V. N. Chugunov, “How to characterize $(T+H)$-matrices and $(T+H)$-circulants”, Comput. Math. Math. Phys., 55:2 (2015), 175–178
15.
V. N. Chugunov, Kh. D. Ikramov, “Permutability of Toeplitz and Hankel matrices”, Linear Algebra and Its Applications, 467 (2015), 226–242 (cited: 5) (cited: 5)
16.
V. N. Chugunov, Kh. D. Ikramov, “A complete solution of the permutability problem for Toeplitz and Hankel matrices”, Linear Algebra and Its Applications, 478 (2015), 53–80 (cited: 1) (cited: 1)
17.
V. N. Chugunov, Kh. D. Ikramov, “O klassifikatsii par perestanovochnykh teplitsevoi i gankelevoi matrits”, Dokl. RAN, 464:4 (2015), 406–410 (cited: 1)
18.
A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “Unitarnye avtomorfizmy prostranstva (T+N)-matrits poryadka 4”, Vestnik Moskovskogo un-ta. Seriya 15. Vychisl. matematika i kibernetika, 2015, no. 4, 3–6
19.
A. K. Abdikalykov, V. N. Chugunov, Kh. D. Ikramov, “Unitary automorphisms of the space of Toeplitz-plus-Hankel matrices”, Special Matrices, 2015, no. 3, 58–68
20.
A. V. Plënkin, A. Yu. Chernyshenko, V. N. Chugunov, I.V. Kapyrin, “Metody postroeniya adaptivnykh nestrukturirovannykh setok dlya resheniya gidrogeologicheskikh zadach”, Vychislitelnye metody i programmirovanie, 16 (2015), 518–533
2016
21.
E. E. Tyrtyshnikov, V. N. Chugunov, “On algebras of Hankel circulants and Hankel skew-circulants”, J. Math. Sci. (N. Y.), 216:6 (2016), 825–831
2014
22.
V. N. Chugunov, “Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices”, Math. Notes, 96:2 (2014), 275–284 (cited: 1)
23.
A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “On eigenvalues of $(T+H)$-circulants and $(T+H)$-skew-circulants”, Num. Anal. Appl., 7:2 (2014), 91–103
2015
24.
Kh. D. Ikramov, A. K. Abdikalykov, V. N. Chugunov, “Unitary automorphisms of the space of $3\times3$ Toeplitz-plus-Hankel matrices”, J. Math. Sci. (N. Y.), 207:5 (2015), 756–766
2014
25.
A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “Some acceleration techniques for calculating the eigenvalues of normal Toeplitz matrices”, Comput. Math. Math. Phys., 54:12 (2014), 1761–1764
26.
A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “Unitarnye kongruentsii i gankelevy matritsy”, Dokl. RAN, 457:5 (2014), 507-509 (cited: 1)
27.
Kh. D. Ikramov, V. N. Chugunov, A. K. Abdikalykov, “O lokalnykh usloviyakh, kharakterizuyuschikh mnozhestvo (T+N)-matrits”, Dokl. RAN, 457:1 (2014), 17–18 (cited: 2)
28.
A. K. Abdikalykov, Kh. D. Ikramov, V. N. Chugunov, “O vychislenii sobstvennykh znachenii dlya nekotorykh klassov gankelevykh matrits”, Vestnik Moskovskogo un-ta. Seriya 15. Vychisl. matematika i kibernetika, 2014, no. 1, 5–10
2012
29.
V. N. Chugunov, “On the parametrization of classes of conjugate-normal Toeplitz matrices”, Comput. Math. Math. Phys., 52:5 (2012), 674–679
30.
V. N. Chugunov, “On the problem of describing pairs of commuting Hankel complex matrices”, Comput. Math. Math. Phys., 52:4 (2012), 489–494 (cited: 1) (cited: 1) (cited: 1) (cited: 1)
31.
V. N. Chugunov, “On the skew-symmetric part of the Toeplitz component in the real normal $(T+H)$-problem”, Comput. Math. Math. Phys., 52:2 (2012), 198–202 (cited: 2)
2011
32.
N. L. Zamarashkin, E. E. Tyrtyshnikov, V. N. Chugunov, “Functions Generating Normal Toeplitz Matrices”, Math. Notes, 89:4 (2011), 480–483 (cited: 1)
33.
V. N. Chugunov, “On the parametrization of classes of normal Hankel matrices”, Comput. Math. Math. Phys., 51:11 (2011), 1823–1836 (cited: 5) (cited: 4) (cited: 4) (cited: 4)
34.
Kh. D. Ikramov, V. N. Chugunov, “A characterization of Toeplitz and Hankel circulants”, J. Math. Sci. (N. Y.), 176:1 (2011), 38–43 (cited: 1)
35.
Kh. D. Ikramov, V. N. Chugunov, “On conjugate-normal $(T+H)$-circulants and skew-circulants”, J. Math. Sci. (N. Y.), 176:1 (2011), 32–37
2010
36.
V. N. Chugunov, “On particular solutions of the normal $T+H$-problem”, Comput. Math. Math. Phys., 50:4 (2010), 583–588 (cited: 4) (cited: 3) (cited: 3) (cited: 3)
37.
V. N. Chugunov, Kh. D. Ikramov, “A complete solution of the normal Hankel problem”, Linear Algebra and Its Applications, 432:12 (2010), 3210–3230 (cited: 6) (cited: 6)
38.
V. N. Chugunov, Kh. D. Ikramov, “There exist normal Hankel (ϕ,ψ)-circulants of any order n”, Matrix methods: theory, algorithms and applications, 2010, 222–226 (cited: 2)
2009
39.
Kh. D. Ikramov, V. N. Chugunov, “Classifying normal Hankel matrices”, Dokl. Math., 79:1 (2009), 114–117 (cited: 3) (cited: 3) (cited: 3) (cited: 3)
40.
Kh. D. Ikramov, V. N. Chugunov, “On the Reduction of the Normal Hankel Problem to Two Particular Cases”, Math. Notes, 85:5 (2009), 674–681 (cited: 3) (cited: 2) (cited: 2) (cited: 3)
2010
41.
Kh. D. Ikramov, V. N. Chugunov, “On Toeplitz matrices that are simultaneously normal and conjugate-normal”, J. Math. Sci. (N. Y.), 165:5 (2010), 533–536
2009
42.
V. N. Chugunov, “On two particular cases of solving the normal Hankel problem”, Comput. Math. Math. Phys., 49:6 (2009), 893–900 (cited: 3) (cited: 1) (cited: 1) (cited: 3)
43.
V. N. Chugunov, “Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines”, Comput. Math. Math. Phys., 495:5 (2009), 842–845
44.
V. N. Chugunov, Kh. D. Ikramov, “A contribution to the normal Hankel problem”, Linear Algebra and Its Applications, 430 (2009), 2094–2101 (cited: 7) (cited: 8)
45.
V. N. Chugunov, Kh. D. Ikramov, “The conjugate-normal Toeplitz matrix”, Linear Algebra and Its Applications, 430 (2009), 2467–2473 (cited: 1) (cited: 3)
2008
46.
Kh. D. Ikramov, V. N. Chugunov, “On Normal Hankel Matrices of Low Orders”, Math. Notes, 84:2 (2008), 197–206 (cited: 3) (cited: 1) (cited: 1) (cited: 1)
47.
Kh. D. Ikramov, V. N. Chugunov, “On normal Hankel matrices”, J. Math. Sci. (N. Y.), 150:2 (2008), 1951–1960 (cited: 2)
2007
48.
Kh. D. Ikramov, V. N. Chugunov, “Ob odnom novom klasse normalnykh gankelevykh matrits”, Vestnik Moskovskogo un-ta. Seriya 15. Vychisl. matematika i kibernetika, 2007, no. 1, 10–13
49.
Kh. D. Ikramov, V. N. Chugunov, “Several observations on Toeplitz and Hankel circulants”, J. Math. Sci. (N. Y.), 141:6 (2007), 1639–1642 (cited: 2)
2006
50.
V. Chugunov, D. Svyatski, E. Tyrtyshnikov, Yu. Vassilevski, “Parallel iterative multilevel solution of mixed finite element systems for scalar equations”, Concurrency and computation: practice and experience, 18:5 (2006), 501–518 (cited: 1) (cited: 1)
2003
51.
V. N. Chugunov, Y. V. Vassilevski, “Parallel multilevel data structures for a nonconforming finite element problem on unstructured meshes”, Russian Journal of Numerical Analysis and Mathematical Modelling, 18:1 (2003), 1–11 (cited: 2) (cited: 2)
2002
52.
E. E. Tyrtyshnikov, V. N. Chugunov, “Augmentation and Modification Problems for Hermitian Matrices”, Math. Notes, 71:1 (2002), 118–122
53.
Kh. D. Ikramov, V. N. Chugunov, “Neravenstva tipa Fishera i Adamara dlya akkretivno-dissipativnykh matrits”, Dokl. RAN, 384:5 (2002), 585–586 (cited: 1)
2000
54.
Kh. D. Ikramov, V. N. Chugunov, “Matrix completion problems of block type”, Math. Notes, 67:6 (2000), 727–735
1999
55.
Kh. D. Ikramov, V. N. Chugunov, “Matrix completion problems with arbitrary locations of prescribed entries”, Comput. Math. Math. Phys., 39:9 (1999), 1367–1383
56.
Kh. D. Ikramov, V. N. Chugunov, “On computer algebra procedures constructing matrices with prescribed eigenvalues and diagonal entries”, Comput. Math. Math. Phys., 39:6 (1999), 842–847
57.
Kh. D. Ikramov, V. N. Chugunov, “Ob algebrakh, porozhdaemykh parami sopryazhennykh matrits”, Vestnik Moskovskogo un-ta. Seriya 15. Vychisl. matematika i kibernetika, 1999, no. 1, 49–50
1998
58.
Kh. D. Ikramov, V. N. Chugunov, “On the skew-symmetric part of the product of Toeplitz matrices”, Math. Notes, 63:1 (1998), 124–127 (cited: 5)
Kh. D. Ikramov, V. N. Chugunov, “Rational solvability of the inverse Silva problem”, Comput. Math. Math. Phys., 36:6 (1996), 703–708
61.
Kh. D. Ikramov, V. N. Chugunov, “A criterion for the normality of a complex Toeplitz matrix”, Comput. Math. Math. Phys., 36:2 (1996), 131–137 (cited: 13)
62.
A. George, Kh. D. Ikramov, W.-P. Tang, V. N. Chugunov, “On doubly symmetric tridiagonal forms for complex matrices and tridiagonal inverse eigenvalue problems”, SIAM Journal on Matrix Analysis and Applications, 17:3 (1996), 680–690 (cited: 4) (cited: 7)
1994
63.
M. Yu. Ibragimov, Kh. D. Ikramov, N. V. Savel'eva, V. N. Chugunov, “The stabilizer of the set of asymmetric Toeplitz matrices”, Comput. Math. Math. Phys., 34:8-9 (1994), 1119–1123
64.
Kh. D. Ikramov, V. N. Chugunov, “On the Teng inverse eigenvalue problem”, Linear Algebra and Its Applications, 208/209 (1994), 397–399 (cited: 3)