G. G. Amosov, A. Mokeev, Mathematics of quantum technologies, Collected papers, Tr. Mat. Inst. Steklova, 313, Steklov Math. Inst., Moscow, 2021 (to appear)
2.
G. G. Amosov, “On perturbations of dynamical semigroups defined by covariant completely positive measures on the semi-axis”, Anal. Math. Phys., 11 (2021), 27 , 13 pp. ;
3.
Matematika kvantovykh tekhnologii, Sbornik statei, Tr. MIAN, 313, ed. A. N. Pechen, I. V. Volovich, G. G. Amosov, A. E. Teretenkov, MIAN, M., 2021
2020
4.
G. G. Amosov, A. S. Mokeev, A. N. Pechen, “Non-commutative graphs and quantum error correction for a two-mode quantum oscillator”, Quantum Inf. Process., 19:3 (2020), 95 , 12 pp. (cited: 3) (cited: 3);
5.
G. G. Amosov, A. S. Mokeev, “Non-commutative graphs in the Fock space over one-particle Hilbert space”, Lobachevskii J. Math., 41:4 (2020), 592–596 , arXiv: 1912.12099;
6.
G. G. Amosov, “On inner geometry of noncommutative operator graphs”, Eur. Phys. J. Plus, 135 (2020), 865 , 6 pp. ;
7.
Grigori Amosov, “On classical capacity of Weyl channels”, Quantum Inf. Process., 19 (2020), 401 , 11 pp. ;
8.
G. G. Amosov, A. Mokeev, “On errors generated by unitary dynamics of bipartite quantum systems”, Lobachevskii J. Math., 41:12 (2020), 2310–2315 , arXiv: 2008.00290;
9.
G. G. Amosov, E. L. Baitenov, “On perturbations of the semigroup of shifts on the half-axis changing the domain of its generator”, Lobachevskii J. Math., 41:12 (2020), 2303–2309;
2019
10.
G.G. Amosov, E.O. Kholmogorov, “On singular perturbations of the semigroup of shifts on the algebra of canonical anticommutation relations”, Russian Mathematics, 63:11 (2019), 67–70 (cited: 1) (cited: 1)
11.
G. G. Amosov, A. S. Mokeev, “On linear structure of non-commutative operator graphs”, Lobachevskii J. Math., 40:10 (2019), 1440–1443 (cited: 3) (cited: 3)
12.
G. G. Amosov, Ya. A. Korennoy, “On definition of quantum tomography via the Sobolev embedding theorem”, Lobachevskii J. Math., 40:10 (2019), 1433–1439
13.
Grigori Amosov, “On operator systems generated by reducible projective unitary representations of compact groups”, Turk. J. Math., 43:5 (2019), 2366–2370 (cited: 2) (cited: 2)
14.
G. G. Amosov, “Muzykalnoe ischislenie”, Matematicheskaya sostavlyayuschaya, 2-e izd., rassh. i dop., eds. N. N. Andreev, S. P. Konovalov, N. M. Panyunin, Matematicheskie etyudy, M., 2019, 202https://book.etudes.ru/toc/music/
2018
15.
G. G. Amosov, “On general properties of non-commutative operator graphs”, Lobachevskii J. Math., 39:3 (2018), 304–308 (cited: 6) (cited: 7)
16.
G. G. Amosov, S. Mancini, V. I. Man'ko, “Tomographic portrait of quantum channels”, Rep. Math. Phys., 81:2 (2018), 165–176 (cited: 2) (cited: 3)
17.
G. G. Amosov, A. S. Mokeev, “On non-commutative operator graphs generated by covariant resolutions of identity”, Quantum Inf. Process., 17 (2018), 325 , 11 pp. (cited: 7) (cited: 9)
18.
G.G. Amosov, “O tomograficheskom predstavlenii na ploskosti prostranstva operatorov Shvartsa i dualnogo k nemu”, Kvantovaya dinamika i funktsionalnye integraly: materialy nauchnoi konferentsii, IPM im. M.V. Keldysha RAN, 2018, 63–70http://keldysh.ru/quant/2018/
19.
G. G. Amosov, M. Kpekpassi, N.N. Shamarov, E.Yu. Shamarova, “Antisimmetrichnoe prostranstvo Foka i algebry Grassmana s unitarnym (super-)preobrazovaniem Fure”, Kvantovaya dinamika i funktsionalnye integraly: materialy nauchnoi konferentsii, IPM im. M.V. Keldysha RAN, 2018, 131–138http://keldysh.ru/quant/2018/
2021
20.
G. G. Amosov, “On Various Functional Representations of the Space of Schwarz Operators”, J. Math. Sci. (N. Y.), 252:1 (2021), 1–7
2018
21.
G. G. Amosov, Al. V. Bulinski, An. V. Bulinski, V. M. Buchstaber, I. A. Ibragimov, V. P. Maslov, A. Ya. Helemskii, A. M. Chebotarev, M. E. Shirokov, A. N. Shiryaev, “Alexander Semenovich Holevo (on his 75th birthday)”, Russian Math. Surveys, 73:6 (2018), 1131–1136
2017
22.
Grigori G. Amosov, Sergey N. Filippov, “Spectral properties of reduced fermionic density operators and parity superselection rule”, Quantum Inf. Process., 16:1 (2017), 2 , 16 pp. (cited: 11) (cited: 16)
23.
G. G. Amosov, “On tomographic representation on the plane of the space of Schwartz operators and its dual”, Lobachevskii J. Math., 38:4 (2017), 595–599 (cited: 1) (cited: 1) (cited: 2)
2018
24.
G.G. Amosov, A.S. Mokeev, “On construction of anticliques for noncommutative operator graphs”, J. Math. Sci., 234:3 (2018), 269–275 (cited: 4)
2019
25.
G. G. Amosov, “Algebraic methods of the study of quantum information transfer channels”, Journal of Mathematical Sciences, 241:2 (2019), 109–116
2016
26.
G. G. Amosov, I. Yu. Zhdanovskii, “Structure of the Algebra Generated by a Noncommutative Operator Graph which Demonstrates the Superactivation Phenomenon for Zero-Error Capacity”, Math. Notes, 99:6 (2016), 924–927 (cited: 1) (cited: 1)
2015
27.
G. G. Amosov, “Estimating the output entropy of a tensor product of two quantum channels”, Theoret. and Math. Phys., 182:3 (2015), 397–406 (cited: 4) (cited: 4)
28.
G. G. Amosov, A. I. Dnestryan, “Towards a tomographic representation of quantum mechanics on the plane”, Phys. Scr., 90:7 (2015), 074025 , arXiv: 1503.04640 (cited: 2) (cited: 2)
2016
29.
G. G. Amosov, V. Zh. Sakbaev, “Geometrical properties of systems of vector states and representing of states in the form of Pettis integrals”, St. Petersburg Math. J., 27:4 (2016), 589–597 (cited: 3) (cited: 2)
30.
J. Math. Sci. (N. Y.), 215:6 (2016), 659–676 (cited: 2)
2015
31.
G. G. Amosov, A. S. Nadzharov, “Ob'ektno-orientirovannyi yazyk programmirovaniya OpenMusic i ego ispolzovanie dlya analiza kontseptsii sozdaniya muzykalnykh proizvedenii”, Neirokompyutery: razrabotka, primenenie, 2015, no. 9, 67–76
2014
32.
G. G. Amosov, A. I. Dnestryan, “On the entropy gain under the action of the amplitude damping channel on qutrit”, J. Russian Laser Research, 35:3 (2014), 291–294
2013
33.
G. G. Amosov, V. Zh. Sakbaev, “On Analogs of Spectral Decomposition of a Quantum State”, Math. Notes, 93:3 (2013), 351–359 (cited: 1) (cited: 1)
34.
G. G. Amosov, A. I. Dnestryan, “Reconstruction of a pure state from incomplete information on its optical tomogram”, Russian Math. (Iz. VUZ), 57:3 (2013), 51–55 (cited: 1)
35.
G. G. Amosov, “On estimating the output entropy of the tensor product of a phase-damping channel and an arbitrary channel”, Problems Inform. Transmission, 49:3 (2013), 224–231 (cited: 5) (cited: 2) (cited: 6)
36.
G. G. Amosov, “O postroenii vozmuschenii polugruppy sdvigov na polupryamoi”, Tr. matem. tsentra imeni N.I. Lobachevskogo, 46:11 (2013), 3–5
2012
37.
G. G. Amosov, A. D. Baranov, V. V. Kapustin, “O primenenii modelnykh prostranstv dlya postroeniya vozmuschenii polugruppy sdvigov na polupryamoi”, Ufimsk. matem. zhurn., 4:1 (2012), 17–28 (cited: 1) (cited: 2)
38.
G. G. Amosov, Ya. A. Korennoy, V. I. Man'ko, “Description and measurement of observables in the optical tomographic probability representation of quantum mechanics”, Phys. Rev. A, 85 (2012), 052119 , 9 pp. (cited: 28) (cited: 29)
39.
G. G. Amosov, Ya. A. Korennoi, V. I. Man'ko, “Calculating means of quantum observables in the optical tomography representation”, Theoret. and Math. Phys., 171:3 (2012), 832–838 (cited: 3) (cited: 1) (cited: 1) (cited: 3)
40.
G. G. Amosov, V. Zh. Sakbaev, O. G. Smolyanov, “Linear and nonlinear liftings of states of quantum systems”, Russ. J. Math. Phys., 19:4 (2012), 417–427 (cited: 1) (cited: 1)
G. G. Amosov, A. D. Baranov, V. V. Kapustin, “Perturbations of the isometric semigroup of shifts on the half-axis”, St. Petersburg Math. J., 22:4 (2011), 515–528
2010
43.
G. G. Amosov, D. Goranskaya, I. Traskunov, “Quantum tomography and Kohn density functional theory”, J. Russian Laser Research, 31:3 (2010), 232–238
2009
44.
G. G. Amosov, S. Mancini, “The decreasing property of relative entropy and the strong superadditivity of quantum channels”, Quantum Inf. Comput., 9:7-8 (2009), 594–609 (cited: 10) (cited: 5) (cited: 10)
45.
G. G. Amosov, S. Mancini, “Entanglement from operators splitting”, Foundations of probability and physics—5, AIP Conf. Proc., 1101, Amer. Inst. Phys., New York, 2009, 100–103 (cited: 1) (cited: 2)
46.
G. G. Amosov, V. I. Manko, “A classical limit of a center-of-mass tomogram in view of the central limit theorem”, Phys. Scr., 80:2 (2009), 025006 , 4 pp. (cited: 4) (cited: 4)
47.
G. G. Amosov, V. I. Man'ko, Yu. N. Orlov, “Evolution equation of quantum tomograms for a driven oscillator in the case of the general linear quantization”, Phys. Scr., 79:1 (2009), 015004 , 6 pp. (cited: 1) (cited: 1)
48.
G. G. Amosov, V. I. Man'ko, “Characteristic functions of states in star-product quantization”, J. Russian Laser Research, 30:5 (2009), 435–442 (cited: 2) (cited: 2)
2008
49.
G. G. Amosov, S. Mancini, V. I. Man'ko, “On the information completeness of quantum tomograms”, Phys. Lett. A, 372:16 (2008), 2820–2824 (cited: 3) (cited: 3) (cited: 3)
50.
G. G. Amosov, V. Zh. Sakbaev, “Stokhasticheskie svoistva dinamiki kvantovykh sistem”, Vestnik SamGU – Estestvennonauchnaya seriya, 8:1 (2008), 479–494
2007
51.
G. G. Amosov, “On Weyl channels being covariant with respect to the maximum commutative group of unitaries”, J. Math. Phys., 48:1 (2007), 012104 , 14 pp. (cited: 14) (cited: 13)
52.
G. G. Amosov, “Strong superadditivity conjecture holds for the quantum depolarizing channel in any dimension”, Phys. Rev. A, 75:6 (2007), 060304(R) , 2 pp. (cited: 10) (cited: 5) (cited: 11)
2006
53.
G. G. Amosov, A. D. Baranov, “On dilatation of contracting cocycles and perturbations of the group of shifts on the line by cocycles, II”, Math. Notes, 79:5 (2006), 719–720 (cited: 2)
54.
G. G. Amosov, A. D. Baranov, “Dilations of Contraction Cocycles and Cocycle Perturbations of the Translation Group of the Line”, Math. Notes, 79:1 (2006), 3–17 (cited: 3) (cited: 2) (cited: 2) (cited: 2)
55.
G. G. Amosov, “Remark on the Additivity Conjecture for a Quantum Depolarizing Channel”, Problems Inform. Transmission, 42:2 (2006), 69–76 (cited: 7) (cited: 7) (cited: 9)
56.
G. G. Amosov, “Evolution Equations for Markov Cocycles Obtained by Second Quantization in the Symplectic Fock Space”, Theoret. and Math. Phys., 146:1 (2006), 152–157
57.
G. G. Amosov, S. Mancini, V. I. Manko, “Transmitting qudits through larger quantum channels”, J. Phys. A, 39:13 (2006), 3375–3380 (cited: 5) (cited: 4) (cited: 5)
2005
58.
G. G. Amosov, V. I. Man'ko, “Evolution of probability measures associated with quantum systems”, Theoret. and Math. Phys., 142:2 (2005), 306–310 (cited: 1) (cited: 1) (cited: 1) (cited: 1)
2006
59.
G. G. Amosov, “On Markov perturbations of quantum random problems with stationary increments”, Theory Probab. Appl., 50:4 (2006), 650–658
2005
60.
G. G. Amosov, V. I. Manko, “Tomographic quantum measures for many degrees of freedom and the central limit theorem”, J. Phys. A, 38:10 (2005), 2173–2177 (cited: 5) (cited: 4) (cited: 5)
2004
61.
G. G. Amosov, V. Zh. Sakbaev, “On Self-Adjoint Extensions of Schrödinger Operators Degenerating on a Pair of Half-Lines and the Corresponding Markovian Cocycles”, Math. Notes, 76:3 (2004), 315–322 (cited: 2) (cited: 2)
2005
62.
G. G. Amosov, “On Markovian perturbations of the group of unitary operators associated with a stochastic process with stationary increments”, Theory Probab. Appl., 49:1 (2005), 123–132 (cited: 2) (cited: 2) (cited: 1)
2004
63.
G. G. Amosov, A. D. Baranov, “On perturbations of the group of shifts on the line by unitary cocycles”, Proc. Amer. Math. Soc., 132:11 (2004), 3269–3273 (electronic) (cited: 3) (cited: 4) (cited: 3)
64.
L. Accardi, G. Amosov, U. Franz, “Second quantized automorphisms of the renormalized square of white noise (RSWN) algebra”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:2 (2004), 183–194 (cited: 16) (cited: 16)
65.
G. G. Amosov, P. Schuecker, “Non-Markov excursion set model of dark matter halo abundances”, Astronomy and Astrophysics, 421:2 (2004), 425–432 (cited: 6) (cited: 6) (cited: 6)
2003
66.
G. G. Amosov, “On Markovian cocycle perturbations in classical and quantum probability”, Int. J. Math. Math. Sci., 2003, no. 54, 3443–3467 (cited: 3) (cited: 2)
67.
G. G. Amosov, V. I. Man'ko, “Quantum probability measure for parametric oscillators”, Phys. Lett. A, 318:4-5 (2003), 287–291 (cited: 11) (cited: 8) (cited: 9)
68.
G. G. Amosov, “Stationary quantum stochastic processes from the cohomological point of view”, Quantum probability and infinite dimensional analysis (Burg, 2001), QP–PQ: Quantum Probab. White Noise Anal., 15, World Sci. Publ., River Edge, NJ, 2003, 29–40
69.
G. G. Amosov, G. G. Amosov (jr.), O. S. Rozanova, “Towards a mathematical model of the aortic reservoir”, Biosystems, 71:1-2 (2003), 3–10 (cited: 2)
70.
G. G. Amosov, A. S. Holevo, “On the multiplicativity hypothesis for quantum communication channels”, Theory Probab. Appl., 47:1 (2003), 123–127 (cited: 17) (cited: 6) (cited: 9)
2001
71.
G. G. Amosov, “An approximation modulo $s_2$ of isometrical operators and cocycle conjugacy of endomorphisms of the CAR algebra”, Fundam. Prikl. Mat., 7:3 (2001), 925–930
72.
G. G. Amosov, A. V. Bulinski, M. E. Shirokov, “Regular Semigroups of Endomorphisms of von Neumann Factors”, Math. Notes, 70:5 (2001), 583–598 (cited: 3) (cited: 1) (cited: 3)
73.
G. G. Amosov, “On cocycle conjugacy of quasifree endomorphism semigroups on the CAR algebra”, Proceedings of the Seminar on Stability Problems for Stochastic Models, Part I (Naleczow, 1999), J. Math. Sci. (New York), 105, no. 6, 2001, 2496–2503 (cited: 4) (cited: 4)
2000
74.
G. G. Amosov, “On the approximation of semigroups of isometries in a Hilbert space”, Russian Math. (Iz. VUZ), 44:2 (2000), 5–10
75.
G. G. Amosov, A. S. Holevo, R. F. Werner, “On the Additivity Conjecture in Quantum Information Theory”, Problems Inform. Transmission, 36:4 (2000), 305–313
76.
G. G. Amosov, “Cocycle perturbation of quasifree algebraic $K$-flow leads to required asymptotic dynamics of associated completely positive semigroup”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3:2 (2000), 237–246 (cited: 7) (cited: 8) (cited: 7)
1997
77.
G. G. Amosov, A. V. Bulinski, “The Powers–Arveson index for quasifree dynamical semigroups”, Math. Notes, 62:6 (1997), 781–784 (cited: 1)
Mathematics of quantum technologies, Collected papers, Tr. Mat. Inst. Steklova, 313, ed. A. N. Pechen, I. V. Volovich, G. G. Amosov, A. E. Teretenkov, 2021 http://mi.mathnet.ru/book1832