Tsypkin, Georgii Gennadevich

Statistics Math-Net.Ru
Total publications: 11
Scientific articles: 11
Presentations: 3

Number of views:
This page:2248
Abstract pages:948
Full texts:337
Doctor of physico-mathematical sciences (1995)
Speciality: 01.02.05 (Mechanics of fluids, gases and plasmas)
Birth date: 16.02.1954
Keywords: porous media; phase transitions; Stefan problem; multiphase flows; asymptotic solutions; interface; stability; geothermal systems; gas hydrates; permafrost; ground water.


The main objective of the study is to construct the new mathematical models of the transport processes with phase transition in porous media. The models were formulated as generalizations of the classical Stefan problem and are based upon fundamental conservation laws and relations of equilibrium thermodynamics. It was shown that phase transition moving boundary can be presented as a jump of saturation functions. This fact allowed apply the theory of discontinuity to obtain the boundary conditions at unknown moving boundaries for wide class of various processes in porous media. The semi-analytical asyptotic method using both similarity solutions and numerical calculation was developed. This approach was applied to investigate the phase transitions problems in the field of soil science (freezing, thawing and evaporation in soils), geothermal reservoir modelling and mathematical modelling of gas hydrate decomposition in strata and marine sediments.


Graduated from Faculty of Mathematics and Machanics of M. V. Lomonosov Moscow State University (MSU) in 1976 (department of hydromechanics). Ph.D. thesis was defended in 1982. D.Sci. thesis was defended in 1995. A list of my work contains about 70 titles.

Main publications:
  • Tsypkin G. G., Brevdo L. A phenomenological model of the increase of solute concentration in ground water due to the evaporation // Transport in porous media, 1999, 37, 129–151.
  • Tsypkin G. G. Mathematical models of gas hydrates dissociation in porous media // Annals of the New York Academy of Sciences, 2000, 912, 428–436.
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. G. G. Tsypkin, A. T. Il'ichev, “Superheating of water and morphological instability of the boiling front moving in the low-permeability rock”, Int. J. Heat Mass Transfer, 167 (2021),  120820–8  mathnet  isi  scopus
2. G. G. Tsypkin, A. T. Il'ichev, “Comparative Analysis of the Occurrence of Water Superheating and Instability of the Boiling Front in a Porous Medium”, Doklady RAN. Fiz. Tekhn. Nauki, 494:1 (2020),  64–68  mathnet  elib; Dokl. Phys., 65:9 (2020), 333–337  isi  scopus
3. G. G. Tsypkin, “Instability of the phase transition front during water injection into high-temperature rock”, Trudy Mat. Inst. Steklova, 300 (2018),  197–204  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 300 (2018), 189–195  isi  scopus
4. A. T. Il'ichev, G. G. Tsypkin, “Evolution of a condensation surface in a porous medium near the instability threshold”, Trudy Mat. Inst. Steklova, 300 (2018),  86–94  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 300 (2018), 78–85  isi  scopus
5. G. G. Tsypkin, “A mathematical model of freezing of unsaturated soils in the presence of capillary pressure”, Mathematical notes of NEFU, 24:2 (2017),  96–107  mathnet  elib
6. G. G. Tsypkin, A. T. Il'ichev, “Dynamical instability of the evaporation front in low-permeability geothermal reservoirs”, Dokl. Akad. Nauk, 468:6 (2016),  644–647  mathnet  mathscinet  elib; Dokl. Phys., 61:6 (2016), 297–300  isi  elib  scopus
7. A. T. Il'ichev, G. G. Tsypkin, “Morphological instability of an evaporation front moving in a geothermal reservoir”, Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 2016, 6,  65–71  mathnet  mathscinet  elib; Fluid Dynamics, 51:6 (2016), 776–783  isi  elib  scopus
8. Andrej T. Il'ichev, George G. Tsypkin, “Geothermal energy and hydrodynamic instability of phase flows”, Energy Science and Technology, 2015,  214–241  mathnet
9. V. A. Shargatov, A. T. Il'ichev, G. G. Tsypkin, “Dynamics and stability of moving fronts of water evaporation in a porous medium”, Int. J. Heat Mass Transfer, 83 (2015),  552–561  mathnet  isi  elib  scopus
10. A. T. Ilichev, G. G. Tsypkin, “Interaction of stabilizing and destabilizing factors and bifurcations of phase transition fronts”, Engineering Journal: Science and Innovation, 2013, 2,  44–13  mathnet
11. A. T. Il'ichev, G. G. Tsypkin, “Classification of the types of instability of vertical flows in geothermal systems”, Trudy Mat. Inst. Steklova, 281 (2013),  188–198  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 281 (2013), 179–188  isi
12. A. T. Il'ichev, G. G. Tsypkin, “Stability of water-vapor phase transition in geothermal systems”, Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza, 2012, 4,  82–92  mathnet  mathscinet  zmath; Fluid Dyn., 47:4 (2012), 501–510  isi  scopus
13. G. G. Tsypkin, C. Calore, M. Marcolini, “Mathematical modeling of cold water injection into a depleted high-temperature geothermal reservoir”, TVT, 44:3 (2006),  453–459  mathnet  elib; High Temperature, 44:3 (2006), 450–457  elib  scopus
14. G. G. Tsypkin, A. T. Il'ichev, “Устойчивость стационарного фронта фазовых переходов вода-пар в гидротермальных системах”, Dokl. Akad. Nauk, 378:2 (2001),  197  mathnet
15. A. A. Barmin, G. G. Tsypkin, “On the movement of a phase-transition front during the injection of water into a geothermal vapor-saturated stratum”, Dokl. Akad. Nauk, 350:2 (1996),  195–197  mathnet  zmath
16. G. G. Tsypkin, “Formation of two moving boundaries of phase transitions during steam production from hot-water hydrothermal reservoir”, Dokl. Akad. Nauk, 337:6 (1994),  748–751  mathnet
17. G. G. Tsypkin, “The formation of two moving boundaries of phase transitions during dissociation of gas hydrates in strata”, Dokl. Akad. Nauk, 323:1 (1992),  52–57  mathnet  mathscinet; Dokl. Math., 37:3 (1992), 126–128
18. È. A. Bondarev, A. M. Maksimov, G. G. Tsypkin, “On the simulation of gas hydrate dissociation”, Dokl. Akad. Nauk SSSR, 308:3 (1989),  575–578  mathnet
19. A. M. Maksimov, G. G. Tsypkin, “A mathematical model for the freezing of a water-saturated porous medium”, Zh. Vychisl. Mat. Mat. Fiz., 26:11 (1986),  1743–1747  mathnet  zmath; U.S.S.R. Comput. Math. Math. Phys., 26:6 (1986), 91–95
20. N. I. Kidin, G. G. Tsypkin, “On Riemann waves in electrohydrodynamics”, Dokl. Akad. Nauk SSSR, 260:4 (1981),  818–821  mathnet  mathscinet  zmath

Presentations in Math-Net.Ru
1. Mathematical models of heat and mass transfer in porous media and stability problems
G. G. Tsypkin
School of Young Scientists "Mathematical Methods of Mechanics"
November 2, 2021 15:30   
2. Течения с фазовыми переходами в пористых средах
G. G. Tsypkin
All-Russian conference "Modern Problems of Continuum Mechanics" devoted to 110 anniversary of L. I. Sedov
November 14, 2017 11:40   
3. Задачи с фазовыми переходами в теории фильтрации
G. G. Tsypkin
International conference "Contemporary Problems of Mechanics" dedicated to the 80th anniversary of academician A. G. Kulikovskii
March 18, 2013 16:40   

Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2022