RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Fedoryaeva, Tatiana Ivanovna

Total publications: 48 (47)
in MathSciNet: 18 (18)
in zbMATH: 18 (17)
in Web of Science: 3 (3)
in Scopus: 9 (9)
Cited articles: 18
Citations in Math-Net.Ru: 62
Citations in Web of Science: 2
Citations in Scopus: 16

Number of views:
This page:2045
Abstract pages:3990
Full texts:1014
References:402
Associate professor
Candidate of physico-mathematical sciences (1996)
Speciality: 01.01.09 (Discrete mathematics and mathematical cybernetics)
E-mail: ,
Keywords: discrete metric spaces, graphs, metric properties of graphs, isometric embeddings, metric of graph, metric ball, combinatorics.
UDC: 519.1, 519.17, 519.7, 519.173, 519.176, 519.178

Subject:

graphs, combinatorics, discrete metric spaces.

   
Main publications:
  • T. I. Fedoryaeva, Asymptotic approximation for the number of n-vertex graphs of given diameter.// Journal of Applied and Industrial Mathematics, 11:2 (2017), 204-211
  • T. I. Fedoryaeva, Structure of the diversity vector of balls of a typical graph with given diameter.// Sib. Electr. Math. Reports, 13 (2016), 375387.
  • T. I. Fedoryaeva, Majorants and minorants for the classes of graphs with fixed diameter and number of vertices.// Journal of Applied and Industrial Mathematics, 7:2 (2013), 153-165
  • T. I. Fedoryaeva, "Combinatorial algorithms", Novosibirsk, 2011, ISBN: 978-5-4437-0019-9 , 118 pp.
  • T. I. Fedoryaeva, Exact upper estimates of the number of different balls of given radius for the graphs with fixed number of vertexes and diameter.// Diskret. Analysis and Oper. Reseach, 16:6 (2009), 7492.
  • T. I. Fedoryaeva, Diversity vectors of balls in graphs and estimates of the components of the vectors.// Journal of Applied and Industrial Mathematics, 2:3 (2008), 341356.
  • T. I. Fedoryaeva, Variety of balls in metric spaces of trees.// Diskret. Analysis and Oper. Reseach, 12:3 (2005), 7484.
  • T. I. Fedoryaeva, Outerplanar graphs with the metric continuation property. I, II.// Diskret. Analysis and Oper. Reseach, 7:1 (2000), 83112; Diskret. Analysis and Oper. Reseach, 8:1 (2001), 88112.
  • T.I.Fedoryaeva "Operations and Isometric Embeddings of Graphs Related to the Metric Prolongation Property."// Operations Research and Discrete Analysis, Kluwer Academic Publishers, 1997, 3149.

http://www.mathnet.ru/eng/person17964
List of publications on Google Scholar
List of publications on ZentralBlatt
http://www.scopus.com/authid/detail.url?authorId=25029805000

Full list of publications:
| by years | by types | by times cited in WoS | by times cited in Scopus | scientific publications | common list |



   2020
1. T. I. Fedoryaeva, “Klassifikatsiya grafov diametra 2”, Sib. elektron. matem. izv., 17 (2020), 502–512  crossref  isi

   2018
2. A. A. Evdokimov, T. I. Fedoryaeva, “Tree-like structure graphs with full diversity of balls”, J. Appl. Industr. Math., 12:1 (2018), 19-27  mathnet  crossref  crossref  mathscinet  zmath  elib  scopus
3. A. A. Evdokimov, T. I. Fedoryaeva, “Tree-like structure graphs with full diversity of balls”, J. Appl. Industr. Math., 12:1 (2018), 19-27  crossref  mathscinet  zmath  scopus

   2017
4. T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Industr. Math., 11:2 (2017), 204-214  mathnet  crossref  crossref  mathscinet  zmath  elib  elib  scopus
5. T.I.Fedoryaeva, “Vektor raznoobraziya sharov tipichnogo grafa zadannogo diametra”, Matematika v sovremennom mire. Tezisy dokladov Mezhdunarodnoi konferentsii, posvyaschennoi 60-letiyu Instituta matematiki im. S.L.Soboleva (Novosibirsk, 14–19 avgusta 2017 g.), Izdatelstvo Instituta matematiki, 2017, 457 http://math.nsc.ru/conference/mmw/2017/Book_Abstract.pdf  mathnet  elib
6. T. I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs of given diameter”, J. Appl. Industr. Math., 11:2 (2017), 204-214  crossref  mathscinet  zmath  elib  scopus

   2016
7. T. I. Fedoryaeva, “Structure of the diversity vector of balls of a typical graph with given diameter”, Sib. Èlektron. Mat. Izv., 13 (2016), 375–387  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
8. T. I. Fedoryaeva, “Computing the diversity vectors of balls of a given graph”, Sib. Èlektron. Mat. Izv., 13 (2016), 122–129  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
9. T.I. Fedoryaeva, “Asymptotic approximation for the number of n-vertex graphs with given diameter”, Proceedings of the International Conference and PhD-Master Summer School on Graphs and Groups, Spectra and Symmetries. (Novosibirsk: Sobolev Institute of Mathematics), Sobolev Institute of Mathematics & Novosibirsk State University, Novosibirsk, 2016, P.55  mathnet
10. A. A. Evdokimov, E. P. Kutcenogaya, T. I. Fedoryaeva, “On the full diversity of balls for graphs”, Prikl. Diskr. Mat. Suppl., 2016, no. 9, 110–112 http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=pdma&paperid=268&option_lang=eng  mathnet  crossref  elib  scopus

   2015
11. T. I. Fedoryaeva, “On the diversity of balls in a typical graph of a given diameter”, Prikl. Diskr. Mat. Suppl., 2015, no. 8, 127–128  mathnet  crossref  elib
12. T. I. Fedoryaeva, “The diversity vector of balls of a typical graph of small diameter”, Diskretn. Anal. Issled. Oper., 22:6 (2015), 43–54  mathnet  crossref  mathscinet  zmath  elib

   2014
13. A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, J. Appl. Industr. Math., 8:2 (2014), 190–195  mathnet  crossref  mathscinet  elib  elib  scopus (cited: 2)
14. A. A. Evdokimov, T. I. Fedoryaeva, “On the problem of characterizing the diversity vectors of balls”, Journal of Applied and Industrial Mathematics, 8:2 (2014), 190-195  mathnet  crossref  mathscinet  zmath  elib  scopus (cited: 2)
15. Fedoryaeva T.I. (sovmestno s Evdokimovym A.A.), “O graficheskom raznoobrazii sharov”, Problemy teoreticheskoi kibernetiki, materialy XVII mezhdunarodnoi konferentsii (Kazan, 2014), Otechestvo, Kazan, 2014, 77-80 http://elibrary.ru/item.asp?id=23739366  mathnet  elib

   2013
16. T. I. Fedoryaeva, “Majorants and minorants in the graph class with given number of vertices and diameter”, J. Appl. Industr. Math., 7:2 (2013), 153–165  mathnet  crossref  mathscinet  elib  elib
17. T. I. Fedoryaeva, “Mazhoranty i minoranty klassa n-vershinnykh grafov diametra d”, Materialy mezhdunarodnoi konferentsii “Diskret. optimizatsiya i issled. operatsii” (Novosibirsk, 24–28 iyunya 2013 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2013, 114 http://math.nsc.ru/conference/door/2013/Book  mathnet  elib
18. T. I. Fedoryaeva, “Majorants and minorants for the classes of graphs with fixed diameter and number of vertices”, Journal of Applied and Industrial Mathematics, 7:2 (2013), 153-165  mathnet  crossref  mathscinet  zmath  elib  scopus (cited: 2)

   2011
19. T. I. Fedoryaeva, Kombinatornye algoritmy, Izd-vo NGU, Novosibirsk, 2011 , 118 pp.  mathnet  elib
20. T. I. Fedoryaeva, “Raznoobrazie sharov v grafakh s fiksirovannymi chislom vershin i diametrom”, Problemy teoreticheskoi kibernetiki, Izdatelstvo Nizhegorodskogo gosuniversiteta, Nizhnii Novgorod, 2011, 491–495  mathnet  elib
21. T. I. Fedoryaeva, “On the graphs with given diameter, number of vertices, and local diversity of balls”, Journal of Applied and Industrial Mathematics, 5:1 (2011), 44–50  crossref  mathscinet  zmath  elib  scopus (cited: 2)
22. T. I. Fedoryaeva, “On graphs with given diameter, number of vertices, and local diversity of balls”, J. Appl. Industr. Math., 5:1 (2011), 44–50  mathnet  crossref  mathscinet  zmath  elib  elib  scopus (cited: 2)

   2009
23. T. I. Fedoryaeva, “Exact upper estimates of the number of different balls of given radius for the graphs with fixed number of vertexes and diameter”, Diskretn. Anal. Issled. Oper., 16:6 (2009), 74–92  mathnet  mathscinet  zmath  elib

   2008
24. T. I. Fedoryaeva, “Tochnye verkhnie otsenki komponent vektorov raznoobraziya sharov dlya grafov s zadannymi chislom vershin i diametrom”, Materialy XVII Mezhdunar. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem” im. akademika O.B.Lupanova., Izdatelstvo Instituta matematiki, Novosibirsk, 2008, 167–172  elib
25. T. I. Fedoryaeva, “Diversity vectors of balls in graphs and estimates of the components of the vectors”, Journal of Applied and Industrial Mathematics, 2:3 (2008), 341–356  mathnet  crossref  mathscinet  zmath  elib (cited: 1)  scopus (cited: 2)
26. T. I. Fedoryaeva, J. Appl. Industr. Math., 2:3 (2008), 341–356  mathnet  crossref  mathscinet  zmath  elib  elib  scopus (cited: 2)

   2007
27. T. I. Fedoryaeva, “Otsenki chisla razlichnykh sharov zadannogo radiusa v grafakh”, Matematika v sovremennom mire, Rossiiskaya konf., posvyaschennaya 50-letiyu IM SO RAN (Novosibirsk, 17–22 sentyabrya 2007 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2007, 290 http://www.mathnet.ru/php/conference.phtml?confid=34&option_lang=rus

   2006
28. T. I. Fedoryaeva, “Vektory raznoobraziya sharov i svoistva ikh komponent”, Trudy VII Mezhdunarodnoi konferentsii Diskretnye modeli v teorii upravlyayuschikh sistem, MGU, Moskva, 2006, 374-378  mathnet  elib

   2005
29. T. I. Fedoryaeva, “Variety of balls in metric spaces of trees”, Diskretn. Anal. Issled. Oper., 12:3 (2005), 74–84  mathnet  mathscinet  zmath  elib
30. T. I. Fedoryaeva, “O raznoobrazii metricheskikh sharov v grafakh”, Problemy teoreticheskoi kibernetiki, Tezisy dokladov XIV Mezhdunarodnoi konferentsii (Penza, 23–28 maya 2005 g.), Izd-vo mekh.-mat. fak-ta MGU, Moskva, 2005, 158 http://new.math.msu.su/department/dm/dmmc/CONF/14k_tez.pdf  mathnet

   2004
31. T. I. Fedoryaeva, “The property of metric continuation of the shortest paths in graphs”, Diskretn. Anal. Issled. Oper., 11:4 (2004), 56–67  mathnet  mathscinet  zmath  elib
32. T. I. Fedoryaeva, “Grafy, imeyuschie prodolzhenie kratchaishikh tsepei”, Materialy XV Mezhdunar. shkoly-seminara “Sintez i slozhnost upravlyayuschikh sistem” (Moskva, 18–23 oktyabrya 2004 g.), Izd-vo mekh.-mat. fak-ta MGU, Moskva, 2004, 105–109
33. T. I. Fedoryaeva, “Svoistvo metricheskogo prodolzheniya kratchaishikh tsepei”, Materialy konferentsii “Diskret. analiz i issled. operatsii” (Novosibirsk, 28 iyunya-2 iyulya 2004 g.), Izdatelstvo Instituta matematiki, Novosibirsk, 2004, 81  elib

   2001
34. T. I. Fedoryaeva, “Outerplanar graphs with the metric continuity property. II”, Diskretn. Anal. Issled. Oper., 8:1 (2001), 88–112  mathnet  mathscinet  zmath  elib

   2000
35. T. I. Fedoryaeva, “Outerplanar graphs with the metric continuation property. I”, Diskretn. Anal. Issled. Oper., 7:1 (2000), 83–112  mathnet  mathscinet  zmath  elib

   1997
36. T. I. Fedoryaeva, “Operations and Isometric Embeddings of Graphs Related to the Metric Prolongation Property”, Mathematics and Its Applications, 391, Operations Research and Discrete Analysis (1997), 31–49  crossref  mathscinet  elib

   1996
37. T. I. Fedoryaeva, Grafy, udovletvoryayuschie svoistvu prodolzheniya metriki, Avtoreferat Diss.kand. fiz.-matem. nauk, Institut matematiki SO RAN, Novosibirsk, 1996 , 12 pp.  elib
38. T. I. Fedoryaeva, “Izometricheskie vlozheniya grafov i operatsii grafov, svyazannye so svoistvom prodolzheniya metriki”, Materialy XI Mezhdunar. konf. po probl. teoret. kiber. (Ulyanovsk, 10–14 iyulya 1996 g.), Ros. gos. gumanit. un-t, Moskva, 1996, 196–197
39. T. I. Fedoryaeva, “Svoistvo prodolzheniya metriki i porog otdelimosti otobrazhenii”, Materialy XI Mezhdunar. konf. po probl. teoret. kiber. (Ulyanovsk,, 10–14 iyulya 1996 g.), Ros. gos. gumanit. un-t, Moskva, 1996, 194–195
40. T. I. Fedoryaeva, Grafy, udovletvoryayuschie svoistvu prodolzheniya metriki, Diss. kand. fiz.-matem. nauk, Izdatelstvo Instituta matematiki, Novosibirsk, 1996 , 109 pp.  elib
41. A. A. Evdokimov, C. V. Avgustinovich, A. D. Korshunov, Yu. V. Merekin, V. V. Nyu, A. L. Perezhogin, T. I. Fedoryaeva, A. E. Frid, “Metricheskie i kombinatornye voprosy diskretnogo analiza”, Nir/Niokr, 1996.  zmath  elib

   1995
42. T. I. Fedoryaeva, “Operatsii i izometricheskie vlozheniya grafov, svyazannye so svoistvom prodolzheniya metriki”, Diskretn. analiz i issled. oper., 2:3 (1995), 49–67  mathnet (cited: 6)  mathscinet  zmath
43. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.I, Preprint № 1, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 50 pp.
44. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.II, Preprint № 2, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 28 pp.
45. T. I. Fedoryaeva, Vneshneplanarnye grafy, udovletvoryayuschie svoistvu prodolzheniya metriki.III, Preprint № 3, Izdatelstvo Instituta matematiki, Novosibirsk, 1995 , 50 pp.

   1993
46. T. I. Fedoryaeva, “Kharakterizatsiya klassov grafov so svoistvom prodolzheniya metriki”, Metody i sistemy tekhnicheskoi diagnostiki, Materialy X Mezhdunar. konf. po probl. teoret. kib., 18, Izdatelstvo Saratovskogo gosuniversitete, Saratov, 1993, 175

   1992
47. T. I. Fedoryaeva, “Usilennye svoistva prodolzheniya metriki”, Metody diskretnogo analiza v teorii grafov i slozhnosti, 1992, no. 52, 112–118  mathscinet  zmath

   1988
48. T. I. Fedoryaeva, “Kharakterizatsiya odnogo klassa grafov so svoistvom prodolzheniya metriki”, Metody diskretnogo analiza v issledovanii funktsionalnykh sistem, 1988, no. 47, 89-93  mathscinet  zmath

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020