RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Shumilova, Vladlena Valerievna

Statistics Math-Net.Ru
Total publications: 15
Scientific articles: 15

Number of views:
This page:1017
Abstract pages:2935
Full texts:568
References:389
Candidate of physico-mathematical sciences (2003)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Birth date: 11.04.1981
E-mail:
Keywords: Homogenization, viscoelasticity
UDC: 517.9, 517.965, 517.958
   
Main publications:
  • V. V. Shumilova. O printsipe kompaktnosti dlya periodicheskikh singulyarnykh i tonkikh struktur. Matem. zametki, 2006, 79:6, 941–949.
  • V. V. Shumilova Ob odnom svoistve dvukhmasshtabnoi skhodimosti. Dif. uravneniya, 2006, 42:1, 155–157.
  • V. V. Shumilova. Ob usrednenii zadachi s dvumya malymi parametrami v srede s dvoinoi poristostyu. Matem. zametki, 2003, 74:5, 796–799.

http://www.mathnet.ru/eng/person18355
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/731094
http://www.researcherid.com/rid/Q-4186-2016
http://www.scopus.com/authid/detail.url?authorId=12794731700

Publications in Math-Net.Ru
2016
1. A. S. Shamaev, V. V. Shumilova, “Homogenization of the equations of state for a heterogeneous layered medium consisting of two creep materials”, Tr. Mat. Inst. Steklova, 295 (2016),  229–240  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 295 (2016), 213–224  isi  scopus
2. A. S. Shamaev, V. V. Shumilova, “Asymptotic behavior of the spectrum of one-dimensional vibrations in a layered medium consisting of elastic and Kelvin–Voigt viscoelastic materials”, Tr. Mat. Inst. Steklova, 295 (2016),  218–228  mathnet  mathscinet  elib; Proc. Steklov Inst. Math., 295 (2016), 202–212  isi  elib  scopus
2015
3. Alexey S. Shamaev, Vladlena V. Shumilova, “Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid”, J. Sib. Fed. Univ. Math. Phys., 8:3 (2015),  356–370  mathnet
4. V. V. Shumilova, “Reflection of a plane sound wave from the boundary of a heterogeneous medium consisting of elastic and viscoelastic layers”, Zh. Vychisl. Mat. Mat. Fiz., 55:7 (2015),  1208–1220  mathnet  mathscinet  elib; Comput. Math. Math. Phys., 55:7 (2015), 1188–1199  isi  elib  scopus
2013
5. Vladlena V. Shumilova, “Spectrum of One-dimensional Vibrations of a Layered Medium Consisting of a Kelvin–Voigt Material and a Viscous Incompressible Fluid”, J. Sib. Fed. Univ. Math. Phys., 6:3 (2013),  349–356  mathnet
6. V. V. Shumilova, “Homogenizing the Viscoelasticity Problem with Long-Term Memory”, Mat. Zametki, 94:3 (2013),  441–454  mathnet  mathscinet  zmath  elib; Math. Notes, 94:3 (2013), 414–425  isi  elib  scopus
7. A. S. Shamaev, V. V. Shumilova, “О спектре одномерных колебаний в среде из слоев упругого материала и вязкоупругого материала Кельвина–Фойгта”, Zh. Vychisl. Mat. Mat. Fiz., 53:2 (2013),  282–290  mathnet  elib
2012
8. A. S. Shamaev, V. V. Shumilova, “On the spectrum of one-dimensional oscillations of a laminated composite with components of elastic and viscoelastic materials”, Sib. Zh. Ind. Mat., 15:4 (2012),  124–134  mathnet
2011
9. V. V. Shumilova, “Averaging of acoustic equation for partially perforated viscoelastic material with channels filled by a liquid”, CMFD, 39 (2011),  185–198  mathnet  mathscinet; Journal of Mathematical Sciences, 190:1 (2013), 194–208  scopus
2009
10. V. V. Shumilova, “On the compactness principle in variable space $L^p$ for periodic composite structures”, Sib. Èlektron. Mat. Izv., 6 (2009),  526–532  mathnet  mathscinet  elib
2008
11. V. V. Shumilova, “On the Poincaré Inequality for Periodic Composite Structures”, Tr. Mat. Inst. Steklova, 261 (2008),  301–303  mathnet  mathscinet  zmath  elib; Proc. Steklov Inst. Math., 261 (2008), 295–297  isi  elib  scopus
2006
12. V. V. Shumilova, “On one property of two-scale convergence”, Differ. Uravn., 42:1 (2006),  139–140  mathnet  mathscinet; Differ. Equ., 42:1 (2006), 155–157
13. V. V. Shumilova, “Compactness principle for periodic singular and fine structures”, Mat. Zametki, 79:6 (2006),  941–949  mathnet  mathscinet  zmath  elib; Math. Notes, 79:6 (2006), 878–885  isi  scopus
14. V. V. Shumilova, “Compactness principle for periodic singular and fine structures”, Mat. Zametki, 79:2 (2006),  244–253  mathnet  mathscinet  zmath  elib; Math. Notes, 79:2 (2006), 224–231  isi  scopus
2003
15. V. V. Shumilova, “On the Homogenization of a Problem with Two Small Parameters in Double-Porosity Media”, Mat. Zametki, 74:5 (2003),  796–799  mathnet  mathscinet  zmath  elib; Math. Notes, 74:5 (2003), 753–756  isi

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2019