RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Rasulov, Tulkin Husenovich

Statistics Math-Net.Ru
Total publications: 23
Scientific articles: 23
Presentations: 1

Number of views:
This page:1039
Abstract pages:5142
Full texts:1508
References:927
Rasulov, Tulkin Husenovich

Associate professor
Candidate of physico-mathematical sciences (2005)
Speciality: 01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date: 25.12.1976
Phone: +998 90 513 04 45
E-mail:
Keywords: eigenvalues, spectrum.
UDC: 517.984

Subject:

Spectral properties of the block operator matrices.

   
Main publications:
  1. M. I. Muminov, T. H. Rasulov, “The Faddeev Equation and Essential Spectrum of a Hamiltonian in Fock Space”, Methods of Functional Analysis and Topology, 17:1 (2011), 47–57
  2. T. H. Rasulov, “Investigations of the Essential Spectrum of a Hamiltonian in Fock Space”, Applied Mathematics & Information Sciences, 4:3 (2010), 395–412
  3. T. H. Rasulov, M. I. Muminov, M. Hasanov, “On the Spectrum of a Model Operator in Fock Space”, Methods of Functional Analysis and Topology, 15:4 (2009), 369–383  mathscinet
  4. S. Albeverio, S. N. Lakaev, T. H. Rasulov, “On the Spectrum of an Hamiltonian in Fock Space. Discrete Spectrum asymptotics”, Journal of Statistical Physics, 127:2 (2007), 191–220  crossref  mathscinet  zmath
  5. S. Albeverio, S. N. Lakaev, T. H. Rasulov, “The Efimov Effect for a Model Operator Associated to a System of three non Conserved Number of Particles”, Methods of Functional Analysis and Topology, 13:1 (2007), 1–16  mathscinet  zmath

http://www.mathnet.ru/eng/person18414
List of publications on Google Scholar
List of publications on ZentralBlatt
Full list of publications: Download file (31 kB)

Publications in Math-Net.Ru
2019
1. T. H. Rasulov, E. B. Dilmurodov, “Threshold analysis for a family of $2\times2$ operator matrices”, Nanosystems: Physics, Chemistry, Mathematics, 10:6 (2019),  616–622  mathnet  isi
2. T. H. Rasulov, N. A. Tosheva, “Analytic description of the essential spectrum of a family of $3\times 3$ operator matrices”, Nanosystems: Physics, Chemistry, Mathematics, 10:5 (2019),  511–519  mathnet  isi
2016
3. T. H. Rasulov, “Branches of the essential spectrum of the lattice spin-boson model with at most two photons”, TMF, 186:2 (2016),  293–310  mathnet  mathscinet  elib; Theoret. and Math. Phys., 186:2 (2016), 251–267  isi  scopus
2015
4. T. Kh. Rasulov, Z. D. Rasulova, “On the spectrum of a three-particle model operator on a lattice with non-local potentials”, Sib. Èlektron. Mat. Izv., 12 (2015),  168–184  mathnet
5. M. É. Muminov, T. Kh. Rasulov, “An eigenvalue multiplicity formula for the Schur complement of a $3\times3$ block operator matrix”, Sibirsk. Mat. Zh., 56:4 (2015),  878–895  mathnet  mathscinet  elib; Siberian Math. J., 56:4 (2015), 699–713  isi  elib  scopus
2014
6. M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix”, Eurasian Math. J., 5:2 (2014),  60–77  mathnet
7. T. Kh. Rasulov, R. T. Mukhitdinov, “The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, Izv. Vyssh. Uchebn. Zaved. Mat., 2014, 1,  61–70  mathnet; Russian Math. (Iz. VUZ), 58:1 (2014), 52–59  scopus
8. T. H. Rasulov, I. O. Umarova, “Spectrum and resolvent of a block operator matrix”, Sib. Èlektron. Mat. Izv., 11 (2014),  334–344  mathnet
9. T. H. Rasulov, E. B. Dilmurodov, “Investigations of the Numerical Range of a Operator Matrix”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(35) (2014),  50–63  mathnet  zmath  elib
2012
10. T. H. Rasulov, “Structure of the essential spectrum of a model operator associated to a system of three particles on a lattice”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(27) (2012),  34–43  mathnet  zmath
2011
11. T. Kh. Rasulov, “On the number of eigenvalues of a matrix operator”, Sibirsk. Mat. Zh., 52:2 (2011),  400–415  mathnet  mathscinet; Siberian Math. J., 52:2 (2011), 316–328  isi  scopus
12. T. H. Rasulov, “Essential spectrum of a model operator associated with a three-particle system on a lattice”, TMF, 166:1 (2011),  95–109  mathnet  mathscinet; Theoret. and Math. Phys., 166:1 (2011), 81–93  isi  scopus
13. T. Kh. Rasulov, “On the essential spectrum of a model operator associated with the system of three particles on a lattice”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(24) (2011),  42–51  mathnet
14. T. H. Rasulov, Kh. Kh. Turdiev, “Some spectral properties of a generalized Friedrichs model”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  181–188  mathnet
15. T. Kh. Rasulov, A. A. Rakhmonov, “The Faddeev equation and location of the essential spectrum of a three-particle model operator”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(23) (2011),  170–180  mathnet
2010
16. T. H. Rasulov, “Study of the essential spectrum of a matrix operator”, TMF, 164:1 (2010),  62–77  mathnet; Theoret. and Math. Phys., 164:1 (2010), 883–895  isi  scopus
17. T. H. Rasulov, “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, TMF, 163:1 (2010),  34–44  mathnet  zmath; Theoret. and Math. Phys., 163:1 (2010), 429–437  isi  scopus
2009
18. T. H. Rasulov, “Investigation of the spectrum of a model operator in a Fock space”, TMF, 161:2 (2009),  164–175  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 161:2 (2009), 1460–1470  isi  scopus
2008
19. T. H. Rasulov, “The Faddeev equation and the location of the essential spectrum of a model operator for several particles”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, 12,  59–69  mathnet  mathscinet  zmath; Russian Math. (Iz. VUZ), 52:12 (2008), 50–59
20. T. H. Rasulov, “On the Structure of the Essential Spectrum of a Model Many-Body Hamiltonian”, Mat. Zametki, 83:1 (2008),  86–94  mathnet  mathscinet  zmath; Math. Notes, 83:1 (2008), 80–87  isi  scopus
2007
21. T. H. Rasulov, “Discrete spectrum of a model operator in Fock space”, TMF, 152:3 (2007),  518–527  mathnet  mathscinet  zmath  elib; Theoret. and Math. Phys., 152:3 (2007), 1313–1321  isi  scopus
2003
22. S. N. Lakaev, T. H. Rasulov, “Efimov's Effect in a Model of Perturbation Theory of the Essential Spectrum”, Funktsional. Anal. i Prilozhen., 37:1 (2003),  81–84  mathnet  mathscinet  zmath; Funct. Anal. Appl., 37:1 (2003), 69–71  isi  scopus
23. S. N. Lakaev, T. H. Rasulov, “A Model in the Theory of Perturbations of the Essential Spectrum of Multiparticle Operators”, Mat. Zametki, 73:4 (2003),  556–564  mathnet  mathscinet  zmath; Math. Notes, 73:4 (2003), 521–528  isi  scopus

Presentations in Math-Net.Ru
1. Spectral inclusion for unbounded diagonally dominant $n\times n$ operator matrices
T. H. Rasulov
Functional analysis and its applications
January 17, 2019 10:30

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020