Malyshev, Cyril Leonidovich

Statistics Math-Net.Ru
Total publications: 29
Scientific articles: 29
Presentations: 1

Number of views:
This page:969
Abstract pages:4975
Full texts:1520
Doctor of physico-mathematical sciences (2014)
Speciality: 01.01.03 (Mathematical physics)
Birth date: 26.01.1962
Keywords: functional integration, correlation functions, Bethe ansatz


Quantum field theory and statistical physics
List of publications on Google Scholar
List of publications on ZentralBlatt

Publications in Math-Net.Ru
1. N. M. Bogoliubov, C. L. Malyshev, “Heisenberg $XX0$ chain and random walks on a ring”, Zap. Nauchn. Sem. POMI, 494 (2020),  48–63  mathnet
2. N. Bogoliubov, C. Malyshev, “The asymptotics of plane partitions with fixed volumes of diagonal parts”, Zap. Nauchn. Sem. POMI, 487 (2019),  68–77  mathnet
3. N. Bogoliubov, C. Malyshev, “The partition function of the four-vertex model in a special external field”, Zap. Nauchn. Sem. POMI, 473 (2018),  77–84  mathnet; J. Math. Sci. (N. Y.), 242:5 (2019), 636–641  scopus
4. N. Bogoliubov, C. Malyshev, “The ground state-vector of the $XY$ Heisenberg chain and the Gauss decomposition”, Zap. Nauchn. Sem. POMI, 473 (2018),  66–76  mathnet; J. Math. Sci. (N. Y.), 242:5 (2019), 628–635  scopus
5. Nicolay M. Bogoliubov, Cyril Malyshev, “Zero Range Process and Multi-Dimensional Random Walks”, SIGMA, 13 (2017), 056, 14 pp.  mathnet  isi  scopus
6. N. Bogoliubov, C. Malyshev, “Correlation functions as nests of self-avoiding paths”, Zap. Nauchn. Sem. POMI, 465 (2017),  27–45  mathnet; J. Math. Sci. (N. Y.), 238:6 (2019), 779–792
7. N. Bogoliubov, C. Malyshev, “Multi-dimensional random walks and integrable phase models”, Zap. Nauchn. Sem. POMI, 448 (2016),  48–68  mathnet  mathscinet; J. Math. Sci. (N. Y.), 224:2 (2017), 199–213  scopus
8. N. M. Bogolyubov, K. L. Malyshev, “Integrable models and combinatorics”, Uspekhi Mat. Nauk, 70:5(425) (2015),  3–74  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 70:5 (2015), 789–856  isi  scopus
9. N. M. Bogoliubov, C. Malyshev, “Combinatorial aspects of correlation functions of the $XXZ$ Heisenberg chain in limiting cases”, Zap. Nauchn. Sem. POMI, 437 (2015),  15–34  mathnet  mathscinet; J. Math. Sci. (N. Y.), 216:1 (2016), 8–22  scopus
10. C. Malyshev, “The Einstein-like field theory and the renormalization of the shear modulus”, Zap. Nauchn. Sem. POMI, 433 (2015),  196–203  mathnet  mathscinet; J. Math. Sci. (N. Y.), 213:5 (2016), 750–755  scopus
11. N. M. Bogoliubov, C. Malyshev, “A combinatorial interpretation of the scalar products of state vectors of integrable models”, Zap. Nauchn. Sem. POMI, 421 (2014),  33–46  mathnet; J. Math. Sci. (N. Y.), 200:6 (2014), 662–670  scopus
12. N. M. Bogolyubov, K. L. Malyshev, “Ising limit of a Heisenberg $XXZ$ magnet and some temperature correlation functions”, TMF, 169:2 (2011),  179–193  mathnet  mathscinet; Theoret. and Math. Phys., 169:2 (2011), 1517–1529  isi  scopus
13. N. M. Bogoliubov, K. Malyshev, “The correlation functions of the $XXZ$ Heisenberg chain in the case of zero or infinite anisotropy, and random walks of vicious walkers”, Algebra i Analiz, 22:3 (2010),  32–59  mathnet  mathscinet  zmath; St. Petersburg Math. J., 22:3 (2011), 359–377  isi  scopus
14. N. M. Bogolyubov, K. L. Malyshev, “Correlation functions of the XX Heisenberg magnet and random walks of vicious walkers”, TMF, 159:2 (2009),  179–193  mathnet  mathscinet; Theoret. and Math. Phys., 159:2 (2009), 563–574  isi  scopus
15. N. M. Bogolyubov, K. L. Malyshev, “On the calculation of the asymptotics of the two-point correlation function of the one-dimensional Bose gas in the trapping potential”, Zap. Nauchn. Sem. POMI, 347 (2007),  56–74  mathnet  mathscinet; J. Math. Sci. (N. Y.), 151:2 (2008), 2829–2839  scopus
16. N. M. Bogolyubov, K. L. Malyshev, “Functional integration and the twopoint correlation function of the one-dimensional Bose-gas in the harmonic potential”, Algebra i Analiz, 17:1 (2005),  84–114  mathnet  mathscinet  zmath; St. Petersburg Math. J., 17:1 (2006), 63–84
17. K. L. Malyshev, “The condition of quasi-periodicity in imaginary time as a constraint at the functional integration and the time-dependent ZZ-correlator of the XX Heisenberg magnet”, Zap. Nauchn. Sem. POMI, 317 (2004),  142–173  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 136:1 (2006), 3607–3624
18. K. L. Malyshev, “Functional Integration with an “Automorphic” Boundary Condition and Correlators of Third Components of Spins in the $XX$ Heisenberg Model”, TMF, 136:2 (2003),  285–298  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 136:2 (2003), 1143–1154  isi
19. R. K. Bullough, N. M. Bogolyubov, V. S. Kapitonov, K. L. Malyshev, I. Timonen, A. V. Rybin, G. G. Varzugin, M. Lindberg, “Quantum Integrable and Nonintegrable Nonlinear Schrödinger Models for Realizable Bose–Einstein Condensation in $d+1$ Dimensions $(d=1,2,3)$”, TMF, 134:1 (2003),  55–73  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 134:1 (2003), 47–61  isi
20. K. L. Malyshev, “Functional integration and correlators of $z$-components of local spins in the XY and XX Heisenberg magnets”, Zap. Nauchn. Sem. POMI, 291 (2002),  206–227  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 125:2 (2005), 215–228
21. K. L. Malyshev, “Functional integration, zeta regularization and correlators of third components of spins in the $XXO$-Heisenberg model”, Zap. Nauchn. Sem. POMI, 269 (2000),  269–291  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 115:1 (2003), 2037–2048
22. V. S. Kapitonov, K. L. Malyshev, V. N. Popov, P. A. Sevastianov, “The effective action and the collective modes spectrum in the antiferromagnetic phase of the three–band repulsive Hubbard model”, Zap. Nauchn. Sem. POMI, 245 (1997),  216–230  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 99:2 (2000), 2147–2155
23. K. L. Malyshev, V. N. Popov, “On superconductivity in the three-band two-dimensional repulsive Hubbard model”, TMF, 105:1 (1995),  149–162  mathnet  mathscinet  zmath; Theoret. and Math. Phys., 105:1 (1995), 1307–1318  isi
24. C. Malyshev, “Some exact representations for the mass current in $^3\mathrm{He}$-$\mathrm A$ and their zero temperature implications”, Zap. Nauchn. Sem. POMI, 224 (1995),  250–266  mathnet  zmath; J. Math. Sci. (New York), 88:2 (1998), 271–282
25. C. Malyshev, V. N. Popov, “Antiferromagnetic and superconductive states in the three-band two-dimensional repulsive Hubbard model”, Zap. Nauchn. Sem. POMI, 209 (1994),  194–228  mathnet  mathscinet  zmath; J. Math. Sci., 83:1 (1997), 123–144
26. C. Malyshev, “On the two calculations of superfluid current in the $A$-phase of helium-$3$”, Zap. Nauchn. Sem. POMI, 209 (1994),  179–193  mathnet  zmath; J. Math. Sci., 83:1 (1997), 113–122
27. C. Malyshev, V. N. Popov, “Superconductive states in the two-dimensional repulsive Hubbard model”, Zap. Nauchn. Sem. POMI, 199 (1992),  147–176  mathnet  mathscinet  zmath; J. Math. Sci., 77:2 (1995), 3112–3132
28. C. Malyshev, “On exactness of the Abelian gauge field 1-form and on fractional statistics generated by Chern–Simons Lagrangian”, Zap. Nauchn. Sem. POMI, 199 (1992),  132–146  mathnet  mathscinet  zmath; J. Math. Sci., 77:2 (1995), 3102–3111
29. K. L. Malyshev, “Gauge group and gauge transformation in the continual theory of defects”, Zap. Nauchn. Sem. LOMI, 190 (1991),  173–184  mathnet  mathscinet  zmath; J. Math. Sci., 71:1 (1994), 2281–2287

Presentations in Math-Net.Ru
1. Correlation functions of the XX0 Heisenberg chain, q-binomial determinants, and plane partitions in a box
K. L. Malyshev, N. M. Bogolyubov
St. Petersburg Seminar on Representation Theory and Dynamical Systems
February 13, 2013 17:00

Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2021