RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB
 
Kurakin, Leonid Gennadievich

Statistics Math-Net.Ru
Total publications: 23
Scientific articles: 23

Number of views:
This page:752
Abstract pages:3412
Full texts:1159
References:385
Associate professor
Doctor of physico-mathematical sciences (2006)
Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
E-mail:

http://www.mathnet.ru/eng/person18475
List of publications on Google Scholar
List of publications on ZentralBlatt
https://mathscinet.ams.org/mathscinet/MRAuthorID/249113

Publications in Math-Net.Ru
2020
1. L. G. Kurakin, I. A. Lysenko, “On the Stability of the Orbit and the Invariant Set of Thomsonís Vortex Polygon in a Two-Fluid Plasma”, Nelin. Dinam., 16:1 (2020),  3–11  mathnet  elib
2. A. V. Borisov, L. G. Kurakin, “On the Stability of a System of Two Identical Point Vortices and a Cylinder”, Tr. Mat. Inst. Steklova, 310 (2020),  33–39  mathnet; Proc. Steklov Inst. Math., 310 (2020), 25–31
2019
3. L. G. Kurakin, I. V. Ostrovskaya, “On the Stability of Thomson's Vortex $N$-gon and a Vortex Tripole/Quadrupole in Geostrophic Models of Bessel Vortices and in a Two-Layer Rotating Fluid: a Review”, Nelin. Dinam., 15:4 (2019),  533–542  mathnet  elib
4. L. G. Kurakin, A. V. Kurdoglyan, “Semi-Invariant Form of Equilibrium Stability Criteria for Systems with One Cosymmetry”, Nelin. Dinam., 15:4 (2019),  525–531  mathnet  elib
2017
5. Leonid G. Kurakin, Irina V. Ostrovskaya, “On Stability of Thomsonís Vortex $N$-gon in the Geostrophic Model of the Point Bessel Vortices”, Regul. Chaotic Dyn., 22:7 (2017),  865–879  mathnet  isi  scopus
2016
6. Leonid G. Kurakin, Irina V. Ostrovskaya, Mikhail A. Sokolovskiy, “On the Stability of Discrete Tripole, Quadrupole, Thomsoní Vortex Triangle and Square in a Two-layer/Homogeneous Rotating Fluid”, Regul. Chaotic Dyn., 21:3 (2016),  291–334  mathnet  mathscinet  isi  scopus
2012
7. L. G. Kurakin, I. V. Ostrovskaya, “The stability criterion of a regular vortex pentagon outside a circle”, Nelin. Dinam., 8:2 (2012),  355–368  mathnet
8. Leonid G. Kurakin, Irina V. Ostrovskaya, “Nonlinear Stability Analysis of a Regular Vortex Pentagon Outside a Circle”, Regul. Chaotic Dyn., 17:5 (2012),  385–396  mathnet  mathscinet  zmath
9. Leonid G. Kurakin, “On the Stability of Thomsonís Vortex Pentagon Inside a Circular Domain”, Regul. Chaotic Dyn., 17:2 (2012),  150–169  mathnet
2011
10. Leonid G. Kurakin, “On the stability of Thomson's vortex pentagon inside a circular domain”, Nelin. Dinam., 7:3 (2011),  465–488  mathnet
2010
11. L. G. Kurakin, “On the stability of Thomsonís vortex configurations inside a circular domain”, Regul. Chaotic Dyn., 15:1 (2010),  40–58  mathnet  mathscinet  zmath
12. L. G. Kurakin, I. V. Ostrovskaya, “Stability of the Thomson vortex polygon with evenly many vortices outside a circular domain”, Sibirsk. Mat. Zh., 51:3 (2010),  584–598  mathnet  mathscinet  zmath  elib; Siberian Math. J., 51:3 (2010), 463–474  isi  elib  scopus
2009
13. L. G. Kurakin, “The stability of Thomson's configurations of vortices in a circular domain”, Nelin. Dinam., 5:3 (2009),  295–317  mathnet
14. L. G. Kurakin, “On the stability criteria in A. M. Lyapunov's paper “A study of one of the special cases of the problem of stability of motion””, Vladikavkaz. Mat. Zh., 11:3 (2009),  28–37  mathnet  mathscinet
2004
15. L. G. Kurakin, V. I. Yudovich, “On equilibrium bifurcations in the cosymmetry collapse of a dynamical system”, Sibirsk. Mat. Zh., 45:2 (2004),  356–374  mathnet  mathscinet  zmath  elib; Siberian Math. J., 45:2 (2004), 294–310  isi
2003
16. L. G. Kurakin, V. I. Yudovich, “Codimension One Bifurcation of 2-Dimensional Tori Born from an Equilibrium Family in Systems with Cosymmetry”, Mat. Zametki, 73:5 (2003),  795–800  mathnet  mathscinet  zmath  elib; Math. Notes, 73:5 (2003), 751–755  isi  scopus
2001
17. L. G. Kurakin, “On stability of boundary equilibria in systems with cosymmetry”, Sibirsk. Mat. Zh., 42:6 (2001),  1324–1334  mathnet  mathscinet; Siberian Math. J., 42:6 (2001), 1102–1110  isi
2000
18. L. G. Kurakin, V. I. Yudovich, “The Hopf bifurcation in a family of equilibria of a dynamical system with a multicosymmetry”, Differ. Uravn., 36:10 (2000),  1315–1323  mathnet  mathscinet; Differ. Equ., 36:10 (2000), 1452–1460
19. L. G. Kurakin, V. I. Yudovich, “Application of the Lyapunov–Schmidt method to the problem of the branching of a cycle from a family of equilibria of a system with multicosymmetry”, Sibirsk. Mat. Zh., 41:1 (2000),  136–149  mathnet  mathscinet  zmath; Siberian Math. J., 41:1 (2000), 114–124  isi
1999
20. V. I. Yudovich, L. G. Kurakin, “Bifurcation of a limit cycle from the equilibrium submanifold in a system with multiple cosymmetries”, Mat. Zametki, 66:2 (1999),  317–320  mathnet  mathscinet  zmath  elib; Math. Notes, 66:2 (1999), 254–258  isi
1998
21. L. G. Kurakin, “Critical cases of stability. Converse implicit function theorem for dynamical systems with cosymmetry”, Mat. Zametki, 63:4 (1998),  572–578  mathnet  mathscinet  zmath; Math. Notes, 63:4 (1998), 503–508  isi
1994
22. L. G. Kurakin, “On the Lyapunov chain of stability criteria in the critical case of a Jordan $2$-cell”, Dokl. Akad. Nauk, 337:1 (1994),  14–16  mathnet  mathscinet  zmath; Dokl. Math., 50:1 (1995), 10–13
23. L. G. Kurakin, “On the stability of a regular vortex $n$-gon”, Dokl. Akad. Nauk, 335:6 (1994),  729–731  mathnet  mathscinet  zmath; Dokl. Math., 39:4 (1994), 284–286

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2020