RUS  ENG JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PERSONAL OFFICE
 
Borodin Oleg Veniaminovich

Statistics Math-Net.Ru
Total publications: 60
Scientific articles: 59
Cited articles: 54
Citations in Math-Net.Ru: 431

Number of views:
This page:1711
Abstract pages:10759
Full texts:2333
References:823
Senior Researcher
Doctor of physico-mathematical sciences
E-mail:

http://www.mathnet.ru/eng/person18494
List of publications on Google Scholar
http://zbmath.org/authors/?q=ai:borodin.oleg-v
http://www.ams.org/mathscinet/search/author.html?return=viewitems&mrauthid=230394

Publications in Math-Net.Ru
1. Light neighborhoods of $5$-vertices in $3$-polytopes with minimum degree $5$
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 13 (2016),  584–591
2. Describing $4$-paths in $3$-polytopes with minimum degree $5$
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 57:5 (2016),  981–987
3. Light and low $5$-stars in normal plane maps with minimum degree $5$
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 57:3 (2016),  596–602
4. Heights of minor faces in triangle-free $3$-polytopes
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 56:5 (2015),  982–987
5. Each $3$-polytope with minimum degree $5$ has a $7$-cycle with maximum degree at most $15$
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 56:4 (2015),  775–789
6. The vertex-face weight of edges in $3$-polytopes
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 56:2 (2015),  338–350
7. The weight of edge in 3-polytopes
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 11 (2014),  457–463
8. Combinatorial structure of faces in triangulated $3$-polytopes with minimum degree $4$
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 55:1 (2014),  17–24
9. 2-distance 4-coloring of planar subcubic graphs
O. V. Borodin, A. O. Ivanova
Diskretn. Anal. Issled. Oper., 18:2 (2011),  18–28
10. Vertex decompositions of sparse graphs into an independent vertex set and a subgraph of maximum degree at most $1$
O. V. Borodin, A. V. Kostochka
Sibirsk. Mat. Zh., 52:5 (2011),  1004–1010
11. Acyclic 5-choosability of planar graphs without 4-cycles
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 52:3 (2011),  522–541
12. Injective $(\Delta+1)$-coloring of planar graphs with girth 6
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 52:1 (2011),  30–38
13. Acyclic 4-colorability of planar graphs without 4- and 5-cycles
O. V. Borodin
Diskretn. Anal. Issled. Oper., 17:2 (2010),  20–38
14. Acyclic $3$-choosability of planar graphs with no cycles of length from $4$ to $11$
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 7 (2010),  275–283
15. Acyclic 4-coloring of plane graphs without cycles of length 4 and 6
O. V. Borodin
Diskretn. Anal. Issled. Oper., 16:6 (2009),  3–11
16. Acyclic 3-choosability of plane graphs without cycles of length from 4 to 12
O. V. Borodin
Diskretn. Anal. Issled. Oper., 16:5 (2009),  26–33
17. Near-proper vertex 2-colorings of sparse graphs
O. V. Borodin, A. O. Ivanova
Diskretn. Anal. Issled. Oper., 16:2 (2009),  16–20
18. Partitioning sparse plane graphs into two induced subgraphs of small degree
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 6 (2009),  13–16
19. List 2-distance $(\Delta+2)$-coloring of planar graphs with girth 6 and $\Delta\ge24$
O. V. Borodin, A. O. Ivanova
Sibirsk. Mat. Zh., 50:6 (2009),  1216–1224
20. Высота цикла длины 4 в 1-планарных графах с минимальной степенью 5 без треугольников
O. V. Borodin, I. G. Dmitriev, A. O. Ivanova
Diskretn. Anal. Issled. Oper., 15:1 (2008),  11–16
21. Circular $(5,2)$-coloring of sparse graphs
O. V. Borodin, S. G. Hartke, A. O. Ivanova, A. V. Kostochka, D. B. West
Sib. Èlektron. Mat. Izv., 5 (2008),  417–426
22. List $2$-arboricity of planar graphs with no triangles at distance less than two
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 5 (2008),  211–214
23. Planar graphs without triangular $4$-cycles are $3$-choosable
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 5 (2008),  75–79
24. Предписанная 2-дистанционная $(\Delta+1)$-раскраска плоских графов с заданным обхватом
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva
Diskretn. Anal. Issled. Oper., Ser. 1, 14:3 (2007),  13–30
25. Minimax degrees of quasiplane graphs without $4$-faces
O. V. Borodin, A. O. Ivanova, A. V. Kostochka, N. N. Sheikh
Sib. Èlektron. Mat. Izv., 4 (2007),  435–439
26. Decomposing a planar graph into a forest and a subgraph of restricted maximum degree
O. V. Borodin, A. O. Ivanova, B. S. Stechkin
Sib. Èlektron. Mat. Izv., 4 (2007),  296–299
27. Oriented 5-coloring of sparse plane graphs
O. V. Borodin, A. O. Ivanova, A. V. Kostochka
Diskretn. Anal. Issled. Oper., Ser. 1, 13:1 (2006),  16–32
28. Sufficient conditions for the minimum $2$-distance colorability of plane graphs of girth $6$
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva
Sib. Èlektron. Mat. Izv., 3 (2006),  441–450
29. Planar graphs without triangles adjacent to cycles of length from $3$ to $9$ are $3$-colorable
O. V. Borodin, A. N. Glebov, T. R. Jensen, A. Raspaud
Sib. Èlektron. Mat. Izv., 3 (2006),  428–440
30. List $(p,q)$-coloring of sparse plane graphs
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva
Sib. Èlektron. Mat. Izv., 3 (2006),  355–361
31. Sufficient conditions for the 2-distance $(\Delta+1)$-colorability of planar graphs with girth 6
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva
Diskretn. Anal. Issled. Oper., Ser. 1, 12:3 (2005),  32–47
32. An oriented colouring of planar graphs with girth at least $4$
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 2 (2005),  239–249
33. An oriented $7$-colouring of planar graphs with girth at least $7$
O. V. Borodin, A. O. Ivanova
Sib. Èlektron. Mat. Izv., 2 (2005),  222–229
34. A sufficient condition for the 3-colorability of plane graphs
O. V. Borodin, A. N. Glebov
Diskretn. Anal. Issled. Oper., Ser. 1, 11:1 (2004),  13–29
35. Sufficient conditions for planar graphs to be $2$-distance $(\Delta+1)$-colorable
O. V. Borodin, A. N. Glebov, A. O. Ivanova, T. K. Neustroeva, V. A. Tashkinov
Sib. Èlektron. Mat. Izv., 1 (2004),  129–141
36. Continuation of a $3$-coloring from a $7$-face onto a plane graph without $3$-cycles
V. A. Aksenov, O. V. Borodin, A. N. Glebov
Sib. Èlektron. Mat. Izv., 1 (2004),  117–128
37. $2$-distance coloring of sparse planar graphs
O. V. Borodin, A. O. Ivanova, T. K. Neustroeva
Sib. Èlektron. Mat. Izv., 1 (2004),  76–90
38. Continuation of a 3-coloring from a 6-face to a plane graph without 3-cycles
V. A. Aksenov, O. V. Borodin, A. N. Glebov
Diskretn. Anal. Issled. Oper., Ser. 1, 10:3 (2003),  3–11
39. Strengthening Lebesgue's theorem on the structure of the minor faces in convex polyhedra
O. V. Borodin
Diskretn. Anal. Issled. Oper., Ser. 1, 9:3 (2002),  29–39
40. On the continuation of a 3-coloring from two vertices in a plane graph without 3-cycles
V. A. Aksenov, O. V. Borodin, A. N. Glebov
Diskretn. Anal. Issled. Oper., Ser. 1, 9:1 (2002),  3–26
41. Estimating the Minimal Number of Colors in Acyclic -Strong Colorings of Maps on Surfaces
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena
Mat. Zametki, 72:1 (2002),  35–37
42. On the partition of a planar graph of girth 5 into an empty and an acyclic subgraph
O. V. Borodin, A. N. Glebov
Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  34–53
43. Minimal degrees and chromatic numbers of squares of planar graphs
O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel
Diskretn. Anal. Issled. Oper., Ser. 1, 8:4 (2001),  9–33
44. The structure of plane triangulations in terms of clusters and stars
O. V. Borodin, H. Broersma, A. N. Glebov, J. van den Heuvel
Diskretn. Anal. Issled. Oper., Ser. 1, 8:2 (2001),  15–39
45. Distributive colorings of plane triangulations of minimum degree five
S. V. Avgustinovich, O. V. Borodin, A. È. Frid
Diskretn. Anal. Issled. Oper., Ser. 1, 8:1 (2001),  3–16
46. On a structural property of plane graphs
V. A. Aksenov, O. V. Borodin, A. N. Glebov
Diskretn. Anal. Issled. Oper., Ser. 1, 7:4 (2000),  5–19
47. Acyclic $k$-strong coloring of maps on surfaces
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena
Mat. Zametki, 67:1 (2000),  36–45
48. Acyclic coloring of 1-planar graphs
O. V. Borodin, A. V. Kostochka, A. Raspaud, E. Sopena
Diskretn. Anal. Issled. Oper., Ser. 1, 6:4 (1999),  20–35
49. The height of small faces in planar normal maps
O. V. Borodin, D. V. Loparev
Diskretn. Anal. Issled. Oper., Ser. 1, 5:4 (1998),  6–17
50. Weight of faces in plane maps
O. V. Borodin, D. R. Vudal
Mat. Zametki, 64:5 (1998),  648–657
51. Colorings and topological representations of graphs
O. V. Borodin
Diskretn. Anal. Issled. Oper., 3:4 (1996),  3–27
52. Neighborhoods of edges in normal cards
S. V. Avgustinovich, O. V. Borodin
Diskretn. Anal. Issled. Oper., 2:3 (1995),  3–9
53. Structure of neighborhoods of edges in planar graphs and simultaneous coloring of vertices, edges and faces
O. V. Borodin
Mat. Zametki, 53:5 (1993),  35–47
54. Bidegree of graph and degeneracy number
O. V. Borodin
Mat. Zametki, 53:4 (1993),  13–20
55. A structural theorem on planar graphs and its application to coloring
O. V. Borodin
Diskr. Mat., 4:1 (1992),  60–65
56. Minimal weight of face in plane triangulations without 4-vertices
O. V. Borodin
Mat. Zametki, 51:1 (1992),  16–19
57. Joint generalization of the theorems of Lebesgue and Kotzig on the combinatorics of planar maps
O. V. Borodin
Diskr. Mat., 3:4 (1991),  24–27
58. Generalization of a theorem of Kotzig and a prescribed coloring of the edges of planar graphs
O. V. Borodin
Mat. Zametki, 48:6 (1990),  22–28
59. Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs
O. V. Borodin
Mat. Zametki, 46:5 (1989),  9–12

60. In memory of Dmitry Germanovich Fon-Der-Flaass
S. V. Avgustinovich, O. V. Borodin, A. V. Kostochka, V. D. Mazurov
Sib. Èlektron. Mat. Izv., 7 (2010),  1–4

Organisations
 
Contact us:
 Terms of Use  Registration  Logotypes © Steklov Mathematical Institute RAS, 2017